
Frameworks Getting Started 1

Frameworks

Getting Started

For Frameworks Version 5.0

Object
Behavior
Framework

Frameworks

Persistence
Framework

Application
Framework

GUI

Model

RDBMS

Mapping

GUI Logic

Frameworks Getting Started2

Frameworks Getting Started
Copyright and trademarks 3

Copyright and trademarks

Copyright
Copyright 2000 Mynd. All rights reserved.
Mynd Frameworks V5.0.
Frameworks Getting Started Manual, July 2000
For more information about Mynd Frameworks, please contact:

Mynd SoftwareConsult GmbH
Taubenholzweg 1
D-51105 Köln (Cologne, Germany)
Tel. : (+49) (0) 221 - 8029 - 0
FAX : (+49) (0) 221 - 8029 - 999
Email: info@mynd.de
Web: www.mynd.com

Trademarks
ENVY is a registered trademark of the Object Technology International corporation.
Visual Age for Smalltalk and OS/2 are registered trademarks of the International Business Machines Corp.
Windows and Windows/NT are registered trademarks of the Microsoft Corp.

Frameworks Getting Started
Copyright and trademarks4

Frameworks Getting Started
Table of Contents 5

Table of Contents

Copyright and trademarks ..3

Table of Contents ...5

Documentation Overview ..11
Congratulations..11
Frameworks Getting Started (this manual) ..11
Other manuals ...12
Training from Mynd..12

Installing Frameworks ...13
System requirements...13
Installation Overview..13
Importing configuration maps...13
Loading application maps (with required maps) ..14
Frameworks tools available from micFrameworks menu...15

Tutorial ...17
1. Tutorial overview ..19
2. Using the example code ...21
3. Using the example applications ...22

3.1. Import the ZyxTutorial application versions ..22
3.2. Load the required ZyxTutorial application edition ...23
3.3. Load a different ZyxTutorial application edition ..23

4. Create ZyxTutorial application ...24
4.1. Create application ZyxTutorial. ...24

5. Create ZyxMember (Domain Object) ...25
5.1. Create MicFwDomainObject subclass ZyxMember..25
5.2. Add ZyxMember>>name (String)..25

6. Create ZyxEditMember (Domain Process) ..27
6.1. Create MicFwDomainProcess subclass ZyxEditMember. ..27
6.2. Open Domain Process Browser (DPB) on ZyxEditMember..27
6.3. Adding a Base Connection to a DP ..27

7. Create ZyxEditMemberView (View) ...29
7.1. Create AbtAppBldrView subclass ZyxEditMemberView. ..29
7.2. Add label and text field to View...29
7.3. Assign View to Process ..30
7.4. Test...30

8. View connections ...32
8.1. Open Connections Browser ..32

9. Multiple non-transacted views ..33
9.1. Create ZyxEditMember>>openOn: class and instance methods..33
9.2. Test...33

10. Multiple views: transacted non-isolated ...35
10.1. Define ZyxEditMember as transacted process ...35
10.2. Specify ZyxMember>>name as transacted ..35
10.3. Transaction Browser...36
10.4. Test...36

11. Multiple views: transacted isolated ...40
11.1. Define ZyxEditMember as transacted ISOLATED process ..40
11.2. Test...40

12. Create database ...41

Frameworks Getting Started
Table of Contents6

12.1. Create database... 41
12.2. Add database as machine datasource... 41

13. Making application ZyxTutorial persistent-capable .. 44
14. Make DO ZyxMember persistent ... 45

14.1. For ZyxMember>>name: Specify Type, Persistent (Transacted) .. 45
14.2. Add ZyxMember>>id, specify Type, Persistent (Transacted) .. 46

15. Make DP ZyxEditMember persistent ... 47
15.1. Enable ZyxEditMember persistent contexts... 47
15.2. Create ZyxEditMember>>persistentObjectManager.. 47

16. Create POM ... 48
16.1. Configure POM Generator settings.. 48
16.2. Generate POM ... 49
16.3. Store the POM ... 50

17. Generate table ZYXMEMBER using POM ZyxPom .. 51
17.1. Connect POM to database... 51
17.2. Generate DDL .. 52
17.3. Execute DDL .. 53

18. Creating , displaying, editting persistent DO’s in a table using Smalltalk 54
18.1. Creating persistent objects in table ZYXMEMBER (using Smalltalk)... 54
18.2. View data in table (using DB2)... 54
18.3. Load ZyxMember instances from table ZYXMEMBER (using Smalltalk)... 54
18.4. Edit the persistent objects in the table (using Smalltalk).. 55

19. Add commit / abort buttons to ZyxEditMemberView .. 56
19.1. Add commit / abort buttons .. 56
19.2. Test .. 57

20. Adding a variable to a persistent class .. 59
20.1. Add ZyxMember variable weight.. 59
20.2. Add text field for weight to ZyxEditMemberView.. 59
20.3. Regenerate POM ... 59
20.4. Add column WEIGHT to ZYX:ZYXMEMBER ... 60
20.5. Test .. 61

21. Validate range of entered data in ZyxEditMemberView ... 63
21.1. Add ZyxMember class>>initializeValidation... 63
21.2. Change ZyxEditMember Transaction main to non-persistent context ... 63
21.3. Test .. 63

22. Create DO ZyxClub .. 64
22.1. Create MicFwDomainObject subclass ZyxClub. .. 64
22.2. Add ZyxClub>>members and specify relationship / cardinality to ZyxMember.................................... 64
22.3. Add ZyxClub>>currentMember .. 65

23. Create DP ZyxEditClub / modify DP ZyxEditMember .. 66
23.1. Create MicFwDomainProcess subclass ZyxEditClub. ... 66
23.2. Create connection eCPConn to ZyxEditClub ... 66
23.3. Create base connection eCBConn to ZyxClub .. 66
23.4. Add child process connection eMPChConn from ZyxEditClub to ZyxEditMember 66
23.5. Create ZyxEditClub>>selectedMember, selectedMember:.. 67
23.6. Create ZyxEditClub>>openOn: .. 67
23.7. Create ZyxEditMember>>edit .. 67

24. Create ZyxEditClubView (View) ... 68
24.1. Create AbtAppBldrView subclass ZyxEditClubView .. 68
24.2. Add drop-down list to ZyxEditClubView ... 68
24.3. Create ZyxMember>>asListEntry .. 69
24.4. Add push button with connection to ZyxEditMember>>edit ... 69
24.5. Add commitAndCloseView / abortAndCloseView buttons ... 69
24.6. Assign View to Process.. 69
24.7. Test .. 69

25. Transacted child process connection to ZyxEditMember .. 72

Frameworks Getting Started
Table of Contents 7

25.1. Define default transaction settings for child process connection to ZyxEditMember (eMPChConn)....72
25.2. Test...72

26. Transacted parent process ZyxEditClub ..75
26.1. Define default transaction settings for parent process connection to ZyxEditClub (eCPConn)75
26.2. Test...75

27. Adding and deleting members ...77
27.1. Create ZyxEditClub>> addMember, deleteMember ...77
27.2. Add push buttons addMember / deleteMember to ZyxEditClubView..77
27.3. Test...77

28. Implementing HoverHelp and F1 Help (using a ViewPort) ...78
28.1. Enable HoverHelp in ZyxEditMemberView ...78
28.2. Create MicFwViewPort subclass ZyxMemberViewPort ..78
28.3. Create ZyxMemberViewPort>>nameHoverHelpText..78
28.4. Create ZyxMemberViewPort>>nameHelpText ...79
28.5. Assign ZyxMemberViewPort as the ViewPort for eMBConn ..79
28.6. Test...79

29. Enabling/disabling buttons ...80
29.1. Create MicFwViewPort subclass ZyxEditMemberViewPort..80
29.2. Create ZyxEditMemberViewPort>>editEnabled ...80
29.3. Assign ZyxEditMemberViewPort to eMPChConn...80
29.4. Test...80

30. Using a ViewPort as a filter ..82
30.1. Create ZyxEditClubView2 (with List instead of Drop-down list) ..82
30.2. Create MicFwViewPort subclass ZyxEditClubViewPort2..82
30.3. Create ZyxEditClubViewPort2 filter accessors for selectedMember...83
30.4.SpecifyZyxEditClubView2/ZyxEditClubViewPort2astheview/ViewPortforZyxEditClubconnectioneCPConn

83
30.5. Test...83

31. Displaying / hiding a GroupControl ..85
31.1. Add GroupBox to ZyxEditMemberView ..85
31.2. Add label and text field for ZyxMember>>weight to GroupBox...85
31.3. Create ZyxEditMemberViewPort>>personalInfoVisible ..86
31.4.SpecifyZyxEditMemberViewPortastheViewPortforZyxEditMemberconnectioneMPConn(noteMPChConn)

86
31.5. Create ZyxEditMember>>weightNotExcessive...86
31.6. Test...86

32. Static ZyxEditClubView GroupBox containing ZyxEditMember as child process88
32.1. Copy GroupBox from ZyxEditMemberView to ZyxEditClubView2..88
32.2. Add commitAndBegin and abortAndBegin buttons to GroupBox..88
32.3. Modify ZyxEditClub>>selectedMember: ...89
32.4. Create ZyxEditClubViewPort2>>personalInfoVisible..89
32.5. Modify ZyxMember>>initializeValidation...89
32.6. Create ZyxEditClubViewPort2>>personalInfoEnabled ...89
32.7. Test...89

33. Static ZyxEditClubView Notebook containing ZyxEditMember as child process91
33.1. Add Notebook to ZyxEditClubView2...91
33.2. Add Notebook page to Notebook..91
33.3. Add <weight> label and text field to Notebook page...91
33.4. Add commitAndBegin and abortAndBegin buttons to Notebook page ...92
33.5. Test...92

34. Authorization: DO attribute accessors ..94
34.1. Create MicFwDomainObject subclass ZyxUser..94
34.2. Create ZyxUser class>>current ..94
34.3. Add variables ZyxUser>>authorizeReadWeight, authorizeWriteWeight (in ONB)................................94
34.4. Add authorizeReadWeight, authorizeWriteWeight toggle buttons to ZyxEditClubView2......................94
34.5. Create ZyxClub>>authorizeReadWeight, authorizeWriteWeight accessors...95
34.6. Create ZyxMember class>>initializeAuthorization..95

Frameworks Getting Started
Table of Contents8

34.7. Modify ZyxEditClubViewPort2>>personalInfoEnabled... 95
34.8. Test .. 95

35. Authorization: DP methods .. 98
35.1. Add variable ZyxUser>>authorizeDeleteMember (in ONB) ... 98
35.2. Add authorizeDeleteMember toggle button to ZyxEditClubView2 ... 98
35.3. Create ZyxClub>>authorizeDeleteMember accessors .. 98
35.4. Create ZyxEditClub class>>initializeAuthorization... 98
35.5. Test .. 98

36. Modality: MicFwPrimaryApplicationModal ... 100
36.1. Create ZyxEditMember class>>modality ... 100
36.2. Test .. 100

37. Modality: MicFwFullApplicationModal .. 102
37.1. Modify ZyxEditMember class>>modality.. 102
37.2. Test .. 102

38. Modality: MicFwSystemModal ... 103
38.1. Edit ZyxEditMember class>>modality .. 103
38.2. Test .. 103

39. Dynamic GroupBox .. 104
39.1. Disable modality (edit ZyxEditMember class>>modality)... 104
39.2. Create ZyxMember subclasses ZyxStudent, ZyxTeacher ... 104
39.3. Modify GroupBox in ZyxEditClubView2 ... 104
39.4. Create ZyxEditClubViewPort2>>memberFormLabel ... 104
39.5. Create ZyxEditClubViewPort2>>memberForm.. 105
39.6. Create ZyxStudentForm... 105
39.7. Create ZyxTeacherForm .. 105
39.8. Test .. 106

40. Dynamic Notebook ... 107
40.1. Establish 1<->N relationship between ZyxStudent, ZyxTeacher ... 107
40.2. Rename notebook in ZyxEditClubView2.. 108
40.3. Create ZyxEditClubViewPort2>>pages.. 109
40.4. Create ZyxAssignedStudentsForm .. 109
40.5. Create ZyxAssignedTeacherForm ... 109
40.6. Create ZyxEditMemberViewPort>>teacherName .. 109
40.7. Create ZyxEditMemberViewPort>>teacher.. 110
40.8. Create ZyxEditMemberViewPort>>students .. 110
40.9. Test .. 110

41. Container Icon Tree ... 112
41.1. Add Container Icon tree to ZyxEditClubView2... 112
41.2. Create MicFwViewPort subclasses ZyxTeacherViewPort, ZyxStudentViewPort............................... 112
41.3. Create portName methods... 112
41.4. Create membersHasChildren, membersChildren methods ... 113
41.5. Create ZyxMember>>asListEntry .. 113
41.6. Test .. 113

42. Drag & Drop ... 115
42.1. Add Multiple Selection List to ZyxEditClubView2... 115
42.2. Create relationship (primitive) between ZyxClub>>prospects and ZyxStudent 115
42.3. Create ZyxClub>>selection, selection: (in ONB).. 116
42.4. Create ZyxClub>>selectedProspects, selectedProspects: .. 116
42.5. Create MicFwViewPort subclass ZyxClubViewPort ... 116
42.6. Specify ZyxClubViewPort as ViewPort for eCBConn (in DPB) .. 116
42.7. Create ZyxClubViewPort>>prospectsProvidedOperations .. 117
42.8. Create ZyxClubViewPort>>membersAcceptedOperations .. 117
42.9. Create ZyxClubViewPort>>prospectsCanMoveMembers:... 117
42.10. Create ZyxClubViewPort>>prospectsMoveMembers:onto: ... 117
42.11. Test .. 117

Appendix A

Frameworks Getting Started
Table of Contents 9

Glossary ..121

List Of Figures ..129

Index ..133

Frameworks Getting Started
Table of Contents10

Frameworks Getting Started
Documentation Overview 11

Documentation Overview

Congratulations
Congratulations on your purchase of Mynd Frameworks. Your purchase reflects your commitment to high-
quality, cost-effective and rapid object-oriented software development. Extensive experience in software
development for the banking and insurance industries has enabled PMS Micado to develop a suite of tools
that can vastly shorten product development cycles. The documentation set from Mynd is designed to help
you exploit the full potential of these tools in the shortest time possible.

Frameworks Getting Started (this manual)
Intended audience

The intended audience for this manual includes anyone who wishes to use Mynd Frameworks to raise the
productivity and quality of software development with Visual Age for Smalltalk. This manual provides a
very detailed step-by-step introduction that allows someone with even minimal Smalltalk, Visual Age or
database experience to quickly master the basic capabilities of Mynd Frameworks.

Sections
This manual contains the following sections:
• ‘ Copyright and trademarks’ (page 3).
• ‘ Table of Contents’ (page 5).
• ‘ Documentation Overview’ (page 11) (this section).
• ‘ Tutorial’ (page 17). Provides a set of programming examples that demonstrate the major program-

ming concepts and techniques of Frameworks.
• ‘ Glossary’ (page 121). Includes any special terms used throughout this manual.
• ‘ List Of Figures’ (page 129).
• ‘ Index’ (page 133).

Recommendations for completing the step-by-step tutorial
For those with minimal IBM Visual Age Smalltalk or IBM DB2 experience
IBM Visual Age and DB2 for Smalltalk must be installed on your computer. Then this manual will guide you
step-by-step in installing and using Mynd Frameworks. After completing the tutorial you will have a good
overview of the basic capabilities of Frameworks.
For those with IBM Visual Age Smalltalk and IBM DB2 experience, but with no Frameworks experi-
ence
You will be able to quickly complete the step-by-step tutorial. When introducing a Frameworks concept,
then manual references the following Frameworks manuals for more detailed information about Frame-
works capabilities:
• Application Framework User’s Guide
• Persistence Framework User’s Guide
• Object Behavior Framework User’s Guide
For those with some previous Frameworks experience
You might want to glance at ‘1. Tutorial overview’ (page 19), which provides an overview of the content of
the tutorial. And then go directly to those sections that cover topics that are new to you. However, note that
each tutorial chapter assumes that the previous chapter was completed. Therefore, not having completed
a chapter, you may have to do some extra work before completing the next chapter.
For those with advanced Frameworks experience
This Getting Started manual is intended as an introduction to Frameworks. Therefore, the tutorial may not
be for you. However, your comments or requests for the content of the tutorial are appreciated (comments
can be sent to info.micado@notes.compuserve.com).

Conventions used in this manual
The following conventions are used in this manual.
• A term being used for the first time is bold and italic. For example: Object Network.
• Dialog names and menu entries are displayed in bold, with a forward slash between nested entries. For

example: System Transcript / Tools / Manage Applications.

Frameworks Getting Started
Documentation Overview12

• Smalltalk code is fixed-width Courier. For example:
ˆself

Reader comments
Any comments you have concerning this manual can be sent to:

info@mynd.de

Other manuals
From Mynd (and referenced throughout this manual):
• Application Framework User’s Guide.
• Persistence Framework User’s Guide.
• Object Behavior Framework User’s Guide.
From IBM:
• IBM Visual Age for Smalltalk manuals.

Training from Mynd
This manual is provides complete information to help you start using Frameworks as soon as possible.
However, it is also recommended to consider enrolling in a training course from Mynd that is customized to
your specific needs. Mynd provides a wide-range of courses covering Smalltalk programming, object-ori-
ented analysis, design, methodolgy, and project management.
For more information about training courses, please contact:

Mynd SoftwareConsult GmbH
Taubenholzweg 1
D-51105 Köln (Cologne, Germany)
Tel. : (+49) (0) 221 - 8029 - 0
FAX : (+49) (0) 221 - 8029 - 999
Email: info@mynd.de
Web: www.mynd.com

Frameworks Getting Started
Installing Frameworks 13

Installing Frameworks

System requirements
The tutorial assumes that you have the following system installation:
• Windows NT.
• IBM Visual for Smalltalk Version 4.5.
• Mynd Frameworks (Application Frameworks, Persistence Frameworks, Object Behavior Frameworks)

V5.0.
• IBM DB2 Universal Database for Windows NT Version 5.
NOTE: Frameworks supports several different databases; however, the examples in the persistence chap-
ters in this tutorial use IBM DB2 Version 5. If you dont have DB2, you can download a 60-day trial version
of DB2 Version 5.2 Single User for Windows NT from IBM for free at www.ibm.com. If you decide to
use a different database, the examples in the tutorial for DB2 demonstrate what tasks need to be accom-
plished.

Installation Overview
IBM Visual Age Smalltalk (version 4.5 recommended) must be already installed on your computer before
installing Frameworks.
Installing Frameworks consists of 2 main steps:
• Importing the configuration maps from the library file on the CD ROM (\manager\V50.dat) to the

library file on your computer (typically \vast\mgr50.dat).
• Loading the applications in the imported configuration maps (along with any other required maps) to

your image file (typically \vast\abt.icx).

Importing configuration maps
Frameworks is installed in your Smalltalk environment by importing the required Frameworks applications
using the Visual Age Configuration Maps Browser. The applications are imported by importing the configu-
ration maps that contain the Frameworks applications (applications contain the classes and methods).
1. If not started: Start Visual Age for Smalltalk.
2. In the System Transcript: Select Tools / Browse Configuration Maps. The Configuration Maps

Browser opens.
3. In the Configuration Maps Browser: Select Names / Import ("names" refers to the names of configu-

ration maps).
4. In the dialog "Enter the full path name of the library" ("library" refers to the .dat file that contain the con-

figuration maps): Double-click on the Frameworks library file \Manager\V50.dat (on the CD ROM).
The "Selection Required" dialog appears.

Figure 1. Dialog for selecting configuration map versions

Selecting the first configuration map for importing
5. In the Names box: Click on micApplicationExamples (a configuration map). The available versions

appear in the "Versions" box.
6. In the Versions box: Click on V5.0.
7. Click on >>. micApplicationExamples V5.0 has been selected for importing and appears in the Selec-

Frameworks Getting Started
Installing Frameworks14

ted Versions box.

Figure 2. micApplicationExamples R3.4 V1.0a in dialog for selecting configuration map versions

Selecting the remaining configuration maps for importing
8. Repeat the above procedure (selecting a version) for each entry in the Names column. Note: If a ver-

sion "a" exists, then select only that version).
Importing the remaining configuration maps
9. Click OK:
The selected configuration maps and their applications are imported to your library.The message "Finished
importing from \vast\V50.dat" appears in the System Transcript. The configuraton maps are displayed and
highlighted in the "Names" box of the Configuration Maps Browser.

Loading application maps (with required maps)
When a configuration map is loaded, all of its required configuration maps are also loaded. Therefore load-
ing the configuration maps in the order described below will minimize the required effort to load all configu-
ration maps.
Load micFrameworksBaseDevelopment
10. In the Configuration Maps Browser: Select micFrameworksBaseDevelopment. In the Editions

and Versions box: The edition and version of the configuration map appear.

Figure 3. micFrameworksBaseDevelopment in configuration maps browser

11. Right click on the latest edition and version.
12. Select Load with required maps. The applications of the selected configuration map (and its required

maps) are loaded (detailed information appears in the System Transcript). Note that an asterisk ("*")
marks each listed application in the Applications box.

Load remaining configuration maps
13. Load the remaing configuration maps:

13.1. micObjectBehaviorFramework Development. Applications that support Object Behavior
functionality.

13.2. micApplicationFramework Development.
13.3. micApplicationInteraction - Drag and Drop Runtime.
13.4. micApplicationInteraction - Platform GUI Enhancements Development. Required for sup-

port of visual programming in the Composition Editor.
13.5. micApplicationService - Authorization Runtime. Required for authorization support.
13.6. micApplicationService - Validation Runtime. Required for object validation.
13.7. micApplicationService - Multi Language Development. Required for multi-language support.
13.8. micPersistenceOdbc Runtime. Required for run-time support of ODBC.
13.9. micPersistenceOdbc Development. Required for ODBC development tools (such as the POM

Generator, etc.).
14. Select File / Save Image.
15. Close the Configuration Maps Browser.
Frameworks has now been loaded into your IBM Visual Age Smalltalk environment.

Frameworks Getting Started
Installing Frameworks 15

Frameworks tools available from micFrameworks menu
In the System Transcript the menu bar selection "micFrameworks" appears. Click on micFrameworks to
display the submenu of Frameworks tools:

Figure 4. micFrameworks menu.

Framework Logger Tool
• Select Browse Log to open the Framework Logger. For more information about the Framework Log-

ger, see Application Framework User’s Guide chapter ‘5.4. Framework Logger’ (page 233).

Application Framework Tools
• Select Open Domain Processes Browser... to open the DPB. For more information about the DPB,

see Application Framework User’s Guide chapter ‘5.2. Domain Processes Browser’ (page 216).
• Select Browse View Connectors to open the Connectors Browser. For more information about the

Connectors Browser, see Application Framework User’s Guide chapter ‘5.3. View Connectors
Browser’ (page 232).

• Select Open online-debugger to open the Application Framework Debugging Tool. For more infor-
mation about the Application Framework Debugging Tool, see Application Framework User’s Guide
chapter ‘5.5. Online Debugger’ (page 235).

• Select Domain Processes Tools to open a submenu with the following selections:
• Migrate Accessor Methods.
• Reset Application Framework Caches

MLS Tools
• Select Open MLS data editor to open the MLS data editor. For more information about the MLS data

editor, see Application Framework User’s Guide chapter ‘7.3. The MLS Data Editor’ (page 272).
• Select Multilanguage tools to open a submenu with special tools for the MLS subsystem.

Object Behavior Framework Tools
• Select Browse Transactions to open the TransactionBrowser. For more information about the

TransactionBrowser, see Object Behavior Framework User’s Guide chapter ‘3.6. Transaction
Browser’ (page 127).

• Select Browse Object Net... to open the Object Net Browser. For more information about the Object
Net Browser, see Object Behavior Framework User’s Guide chapter ‘3.3. Object Net Browser (Net-
Browser)’ (page 119).

• Select Object Behavior Tools to open a submenu with special tools for OBF.

Persistence Framework Tools
• Select New Persistence Manager... to open the STOPF/ODBC (for ODBC) tool. For more information

about the STOPF tool, see Persistence Framework User’s Guide chapter ‘10.2. The STOPF tool’
(page 196).

• Select Browse Persistence Manager... to open the STOPF/ODBC (for ODBC) tool on an existing
POM. For more information about the STOPF tool, see Persistence Framework User’s Guide chap-
ter ‘10.2. The STOPF tool’ (page 196).

• Select Persistence Tools to open a submenu with special tools for PFW.

Frameworks version and Mynd contact information
• Select About micFrameworks... to display Frameworks version and Mynd contact information.

Frameworks Getting Started
Installing Frameworks16

Frameworks Getting Started
Tutorial

17

Tutorial

Frameworks Getting Started
Tutorial

18

Frameworks Getting Started
Tutorial

1. Tutorial overview 19

1. Tutorial overview
"Example is the school of mankind, and they will learn at no other." Edmund Burke.
This section presents a step-by-step tutorial that walks you through examples that demonstrate the major
concepts in Frameworks. As such, the organization of the tutorial is dictated by what you need to do to get
your job done as quickly as possible.
The following is an outline of the tutorial. It is highly recommended to work through each step in the tutorial.

Using the example code
• ‘2. Using the example code’ (page 21). Explains how to use the example code provided in the accom-

panying fw_gs_ex.txt (Frameworks Getting Started Examples) file.
• ‘3. Using the example applications’ (page 22). Explains how to import the versions of the example appli-

cations (from the file fw_gs_ex.dat) and how to load a version of the example applications.

Creating Application, Domain Object, Process, View
• ‘4. Create ZyxTutorial application’ (page 24). Explains how to create an application with the required

prerequisites.
• ‘5. Create ZyxMember (Domain Object)’ (page 25). Shows how to create a simple domain object.

Domain objects are objects such as Club, Member, Address, etc.
• ‘6. Create ZyxEditMember (Domain Process)’ (page 27).
• ‘7. Create ZyxEditMemberView (View)’ (page 29).

Analyzing the Domain Object, Process, View
• ‘8. View connections’ (page 32).

Transactions
• ‘9. Multiple non-transacted views’ (page 33).
• ‘10. Multiple views: transacted non-isolated’ (page 35).
• ‘11. Multiple views: transacted isolated’ (page 40).

Persistence
NOTE: Frameworks supports several different databases; however, the examples in the persistence chap-
ters in this tutorial use IBM DB2 Version 5. If you dont have DB2, you can download a 60-day trial version
of DB2 Version 5.2 Single User for Windows NT from IBM for free at www.ibm.com.
• ‘12. Create database’ (page 41).
Making application, Domain Object, Process persistent-capable
• ‘13. Making application ZyxTutorial persistent-capable’ (page 44).
• ‘14. Make DO ZyxMember persistent’ (page 45).
• ‘15. Make DP ZyxEditMember persistent’ (page 47).
POM Generators and POMs
• ‘16. Create POM’ (page 48).
• ‘17. Generate table ZYXMEMBER using POM ZyxPom’ (page 51).
Very basic persistence example
• ‘18. Creating , displaying, editting persistent DO’s in a table using Smalltalk’ (page 54).
Other basic examples
• ‘19. Add commit / abort buttons to ZyxEditMemberView’ (page 56).
• ‘20. Adding a variable to a persistent class’ (page 59).
• ‘21. Validate range of entered data in ZyxEditMemberView’ (page 63).

Parent processes
Creating parent process Domain Object, Process, View
• ‘22. Create DO ZyxClub’ (page 64).
• ‘23. Create DP ZyxEditClub / modify DP ZyxEditMember’ (page 66).
• ‘24. Create ZyxEditClubView (View)’ (page 68).

Transactions with parent/child processes
• ‘25. Transacted child process connection to ZyxEditMember’ (page 72).
• ‘26. Transacted parent process ZyxEditClub’ (page 75).

Adding and deleting to/from collections

Frameworks Getting Started
Tutorial
1. Tutorial overview20

• ‘27. Adding and deleting members’ (page 77).

Viewports
• ‘28. Implementing HoverHelp and F1 Help (using a ViewPort)’ (page 78).
• ‘29. Enabling/disabling buttons’ (page 80).
• ‘30. Using a ViewPort as a filter’ (page 82).

Static Group controls
• ‘31. Displaying / hiding a GroupControl’ (page 85).
• ‘32. Static ZyxEditClubView GroupBox containing ZyxEditMember as child process’ (page 88).
• ‘33. Static ZyxEditClubView Notebook containing ZyxEditMember as child process’ (page 91).

Authorization
• ‘34. Authorization: DO attribute accessors’ (page 94).
• ‘35. Authorization: DP methods’ (page 98).

Modality
• ‘36. Modality: MicFwPrimaryApplicationModal’ (page 100).
• ‘37. Modality: MicFwFullApplicationModal’ (page 102).
• ‘38. Modality: MicFwSystemModal’ (page 103).

Dynamic Group controls
• ‘39. Dynamic GroupBox’ (page 104).
• ‘40. Dynamic Notebook’ (page 107).
• ‘41. Container Icon Tree’ (page 112).

Drag&Drop
• ‘42. Drag & Drop’ (page 115) (also introduces the Multiple Selection List).

Frameworks Getting Started
Tutorial

2. Using the example code 21

2. Using the example code
Example code in this User Guide

Example code is displayed throughout this document in courier fixed-width character format:
FW CH 9. Working with transaction contexts."

[
Smalltalk at: #ZyxContext put: MicFwTransactionManager newContext.

]

Executing example code in fw:_gs_ex.txt
If a block of code in this document begins with the text "FW CH (#)" (Frameworks Gettting Started Manual
Chapter #), then the block is included in the file fw_gs_ex.txt (on the CD ROM). To execute this code in a
Workspace window:
2.1. In the System Transcript: Select File / Open.
2.2. Double-click on fw_gs_ex.txt (on the CD ROM). A workspace dialog is opened with the example
text.
If you are using a shared Smalltalk environment
The example code throughout this tutorial uses class names starting with the letters "Zyx". If you are doing
this tutorial in a classroom environment where you will be sharing the Smalltalk development environment
library (mgr45.dat on a server) with other students, then you should change "Zyx" to some combination of
letters that no other student is using. This is necessary since you will be creating classs during the tutorial
and no 2 classes are allowed to have the same name.
2.3. In the workspace: Select Edit / Find/Replace to replace all occurrences of "Zyx" with a unique
combination of letters.
2.4. Select File / Save.
You can now execute the code as you read through this tutorial.
Note: Any Smalltalk code between square brackets ("[" and "]") should be selected and executed together.
In a Visual Age workspace, the entire text between double brackets can be selected by simply placing the
cursor immediately after the "[" (or immediately before the "]") and double-clicking.

Frameworks Getting Started
Tutorial
3. Using the example applications22

3. Using the example applications
The examples in this tutorial are arranged in chapters. Each chapter builds on the work completed in the
previous chapters. Therefore, in order to start doing the examples in a chapter, it is usually necessary that
all the steps in the previous chapters were completed.
However, the file fw_gs_ex.dat (on the CD ROM) contains versions of the ZyxTutorial application for most
of the chapters. Therefore, in order to start a chapter without having completed the previous chapters, sim-
ply load the application version for the previous chapter.
For example, to start immediately with Chapter 11, load edition FW GS 10 of the ZyxApplication.
NOTE: Ignore any alphabetic characters in the version number.
NOTE: Some chapters require a database (ZYX) for the examples. The database may need to be created
to do the examples.

3.1. Import the ZyxTutorial application versions
3.1. In Visual Age Organizer: Select Applications / Import/Export / Import applications.... The dia-

log Enter the full path name of the library appears.
3.2. Select fw_gs_ex.dat on the CD ROM.
3.3. Click Open. The Selection required dialog appears.

Figure 3.1. Importing ZyxTutorial application versions

3.4. In the Names box: Select ZyxTutorial.
3.5. In the Versions box: Select all versions.
3.6. Click >>. The versions appear in the Selected versions box.

Frameworks Getting Started
Tutorial

3. Using the example applications 23

Figure 3.2. Selected versions of ZyxTutorial

3.7. Click OK. The application versions are imported.

3.2. Load the required ZyxTutorial application edition
3.8. In Visual Age Organizer: Select Applications / Load / Available applications.... The dialog Sel-
ection required appears.
3.9. In the Names box: Select ZyxTutorial.

Figure 3.3. ZyxTutorial selected as application to load

3.10. In the Editions box: Select the required edition (the edition number matches the chapter number).
3.11. Click >>. The edition appears in the Selected editions box (FW CH 20 (Frameworks Getting Star-
ted Chapter 20) chosen in the following diagram as an example).

Figure 3.4. Selected edition of ZyxTutorial

3.12. Click OK. The selected edition of ZyxTutorial is loaded.

3.3. Load a different ZyxTutorial application edition
If you need at some point to load a different edition, do the following:
3.13. In Visual Age Organizer: Select ZyxTutorial.
3.14. Right-click.
3.15. In the pop-up menu: Select Load / Another edition.... The Selection required dialog appears.
3.16. Double-click on the required edition. The selected edition is loaded.

Frameworks Getting Started
Tutorial
4. Create ZyxTutorial application24

4. Create ZyxTutorial application
In this chapter you will:
• Create application ZyxTutorial.
All of the classes created during this tutorial will be assigned to your ZyxTutorial application.

4.1. Create application ZyxTutorial.
4.1. In Visual Age Organizer: Select Options / Full menus to display the full menu set in VAST.
4.2. Select Applications / New. The New Application dialog is displayed.
4.3. In the Name field enter "ZyxTutorial".
4.4. Make sure that the checkbox Subapplication of is not checked.
4.5. Click OK. The application ZyxTutorial is selected in the list of applications.

Figure 4.1. ZyxTutorial in the application list.

Frameworks Getting Started
Tutorial

5. Create ZyxMember (Domain Object) 25

5. Create ZyxMember (Domain Object)
In this chapter you will:
• Create Domain Object (DO) ZyxMember. ZyxMember attributes will reference objects such as a

member name, weight, address, etc. For more information about DO’s, consult the Application Frame-
work User’s Guide chapter ‘1.3.4. Domain Object’ (page 38).

• Add attributes to the DO with the Object Net Browser (ONB) tool. The ONB is described in detail in the
Object Behavior Framework User’s Guide in chapter ‘3.3. Object Net Browser (NetBrowser)’ (page
119).

5.1. Create MicFwDomainObject subclass ZyxMember
5.1. In Visual Age Organizer: Select ZyxTutorial.
5.2. Select Parts / New / Part.
5.3. In the field Part class: Enter ZyxMember.
5.4. In the field Part type: Select Domain Object Class.
5.5. In the field Inherits from: Select MicFwDomainObject.
5.6. Uncheck the checkbox Open Now.

Figure 5.1. New part dialog settings for ZyxMember

5.7. Select OK. Note that the new part is now displayed in the right window in the Organizer.

5.2. Add ZyxMember>>name (String)
5.8. In the System Transcript: Select micFrameworks / Browse Object Net.
5.9. In response to the question Select root class: Enter ZyxMember.
5.10. Select OK. The Object Net Browser on: ZyxMember is opened.

Figure 5.2. Object Net Browser on ZyxMember

5.11. Right-click in the box on the upper-right.
5.12. From the pop-up window: Select Add Instance Variable.
5.13. In response to Enter the name for the instance variable: Enter name.

Frameworks Getting Started
Tutorial
5. Create ZyxMember (Domain Object)26

5.14. Click OK. Note the new variable in the ONB.

Figure 5.3. Variable "name" added to ZyxMember within the ONB

5.15. Select Class / Save. NOTE: Changes made in the ONB are not be actually implemented until the
class has been saved.
5.16. Close the ONB.
5.17. Save the image.

Frameworks Getting Started
Tutorial

6. Create ZyxEditMember (Domain Process) 27

6. Create ZyxEditMember (Domain Process)
In this chapter you will:
• Create Domain Process (DP) ZyxEditMember. ZyxEditMember methods implement the functionality

required to edit a member’s attributes. For more information about DP’s, consult the Application
Framework User’s Guide chapter ‘1.4.3.2. Domain Process’ (page 50)

• Create connections for the DP and DO in the Domain Processes Browser (DPB). The DPB is a Visual
tool for setting a variety of parameters for the DP. For more information about DP, consult the Applica-
tion Framework User’s Guide chapter ‘5.2. Domain Processes Browser’ (page 216).

6.1. Create MicFwDomainProcess subclass ZyxEditMember.
6.1. In Visual Age Organizer: Create a new part (do not open now) for ZyxApplication with:
• Part class: Enter ZyxEditMember.
• Part type: Select Domain Process Class.
• Inherits from: Select MicFwDomainProcess.

6.2. Open Domain Process Browser (DPB) on ZyxEditMember
6.2. From System Transcript: Select MicFrameworks / Open Domain Processes Browser....
6.3. In response to Select a root class: Enter ZyxEditMember. The Selection Required dialog
appears.
6.4. In response to "Choose a class": Double-click on ZyxEditMember. The DPB appears:

Figure 6.1. DPB on ZyxEditMember

6.3. Adding a Base Connection to a DP
A Base Connection refers to the connection between the DP class and a DO class (the DO is the "base";
the origins of the term "base" are historical in nature).
6.5. In the Processes Hierarchy box: Right-click on ZyxEditMember.
6.6. Select Add Base Connection. The Selection required dialog appears.

Figure 6.2. Dialog for selecting ZyxMember as the domain object class for ZyxEditMember

Frameworks Getting Started
Tutorial
6. Create ZyxEditMember (Domain Process)28

6.7. In response to Choose a domain object class: Double-click on ZyxMember. Note that in the DP
ZyxEditMember now has a connection to ZyxMember and that the connection is named newDefaultBase-
Connection:

Figure 6.3. Connection from ZyxEditMember to ZyxMember in DPB

Note: The red arrows indicate that unsaved changes have been made in the DPB.

6.3.1. Change the names of the connections
The names in the column Processes Hierarchy are the names of connections. These names will be
changed now to make it easier to distinguish the connection names during the course of the tutorial.

6.3.1.1. Rename the DP connection
6.8. In the Processes Hierarchy column: Click on ZyxEditMember.
6.9. In the Value column: In the row Name: Click on ZyxEditMember.
6.10. Change the name of the connection to eMPConn (edit Member Process Connection). This is the
name of the connection to the DP ZyxEditMember.
6.11. Click in a different area of the Domain Processes Browser in order to reflect the change in the DPB.

6.3.1.2. Rename the DO connection
6.12. In the Processes Hierarchy column: Click on newDefaultBaseConnection.
6.13. In the Value column: In the row Name: Click on newDefaultBaseConnection.
6.14. Change the name of the connection to eMBConn (edit Member Base Connection). This is the
name of the connection to the DO ZyxMember.
6.15. Select Browser / Save all changes.

Figure 6.4. DP dialog after ZyxEditMember / ZyxMember connections renamed

Note that the red arrows have disappeared (the changes have been saved).
6.16. Close the DPB.
6.17. Save the image.

Frameworks Getting Started
Tutorial

7. Create ZyxEditMemberView (View) 29

7. Create ZyxEditMemberView (View)
In this chapter you will:
• Create View ZyxEditMemberView. ZyxEditMemberView will provide the user interface to the DP

ZyxEditMember and DO ZyxMember. For more information about views, see the Application Frame-
work User’s Guide chapter ‘1.3.9. Connecting Objects to Views’ (page 43).

• Add a text field to the view that connects to the DO variable ZyxMember>>name via the naming con-
vention. The naming convention is a method of specify connections to a part with the partName. The
naming convention is described in the Application Framework User’s Guide chapter ‘3.5. View Parts’
(page 113)

• Assign the view ZyxEditMemberView to the DP ZyxEditMember using the DPB.
• Test the view.

7.1. Create AbtAppBldrView subclass ZyxEditMemberView.
7.1. In Visual Age Organizer: Create and open (make sure the Open now checkbox is checked) a new

part for ZyxApplication with:
• Part class: Enter ZyxEditMemberView.
• Part type: Select Visual Part.
• Inherits from: Select AbtAppBldrView.
The following dialog appears:

Figure 7.1. ZyxEditMemberView initial window in the Composition Editor

7.1.1. Rename window
7.2. Double-click on the window on the free-form surface. The Properties dialog appears.
7.3. Change property Title to ZyxEditMember.
7.4. Click OK.

7.2. Add label and text field to View
7.5. Add a label to the view (click on the label icon in the parts palette; the cursor becomes a crosshair;
click in the view window).

Figure 7.2. Label part in the parts palette

7.6. Change the label property object to Name.
7.7. Add a text field to the view.

Figure 7.3. Text field part in the parts palette

Frameworks Getting Started
Tutorial
7. Create ZyxEditMemberView (View)30

Figure 7.4. ZyxEditMemberView with label and text field

7.8. Change the text field property partName to name_. This specifies that the content of the text field
is referenced by the variable "name" in the base connection for the view.
7.9. Select File / Save Part.
7.10. Close the Composition Editor.

7.3. Assign View to Process
7.11. Open the DPB on ZyxEditMember.
7.12. In the Processes Hierarchy box: Select process connection eMPConn.
7.13. In column Name row Default View: Click on column Value. A drop-down list appears.
7.14. Select from the drop-down list ZyxEditMemberView.

Figure 7.5. Assigning ZyxEditMemberView to ZyxEditMember in the DPB

7.15. Select Browser / Save all changes. NOTE: If this option is not available, click anywhere in the dia-
log to register the changes and then the option will be available.
7.16. Close the DPB.
7.17. Save the image.

7.4. Test
7.4.1. Display DO attributes (ZyxMember>>name) in View

NOTE: If when executing the following code an exception is thrown (stating that a view is not defined):
Reopen the DPB and reassign ZyxEditMemberView to ZyxEditMember.
7.18. In the workspace execute the following code (NOTE: If you get the message "invalid character
sequence": replace the single apostrophe (’) characters from the text file with the characters generated via
your computer’s keyboard):
FW CH 7. 1. Test simple view."
[

| aDO aDP |
aDO := ZyxMember new.
aDO name: 'DOName'.
aDP := ZyxEditMember new.
aDP eMBConn: aDO.
aDP openView.

]

The following dialog appears:

Figure 7.6. Display of DO ZyxMember attributes in View ZyxEditMemberView

7.19. Close the dialog.

7.4.2. Display DO attribute of invalid type (not String)
7.20. In the workspace execute the following code:
FW CH 7. 2. Invalid type of object referenced by attribute."
[

| aDO aDP |
aDO := ZyxMember new.
aDO name: 123.

Frameworks Getting Started
Tutorial

7. Create ZyxEditMemberView (View) 31

aDP := ZyxEditMember new.
aDP eMBConn: aDO.
aDP openView.

]

Note that no exception is thrown. The Integer object is automatically converted into a string object for dis-
play.

Figure 7.7. Improper object type (Integer) auto-converted and displayed in text field (String required)

7.21. Close the dialog.

7.4.3. Attempt to display DO of invalid type (exception)
7.22. In the workspace execute the following code:
FW CH 7. 3. Invalid type of domain object."
[

| aDO aDP |
aDO := 'Invalid DO'.
aDP := ZyxEditMember new.
aDP eMBConn: aDO.

]

"Invalid model" exception is thrown, since only a ZyxMember instance can be assigned (as the Base
"model") to the DP Base Connection.

Frameworks Getting Started
Tutorial
8. View connections32

8. View connections
In this chapter you will:
• Use the Connections Browser (CB) to analyze the status of connections between the Views, DP’s,

and DO’s. For more information about the Connections Browser, see the Application Framework
User’s Guide chapter ‘5.3. View Connectors Browser’ (page 232).

8.1. Open Connections Browser
8.1. From System Transcript: Select micFrameworks / Browse View Connectors. The Connectors

Browser opens.
8.2. In the Connector list: Select ZyxEditMemberView:

Figure 8.1. Connections Browser for ZyxEditMemberView

Note the following:
• There connections for the view are eMBConn and eMPConn.
• The connection types are base and process.
• The connection models are ZyxMember and ZyxEditMember.
• eMBConn has a control for the label and text field.
• eMPConn has a control for the window.
8.3. Close the Connections Browser.

Frameworks Getting Started
Tutorial

9. Multiple non-transacted views 33

9. Multiple non-transacted views
In this chapter you will:
• Open 2 views of the object referenced by an attribute. An object can be assigned to the attribute from

either window.
• Test non-transacted changes.

9.1. Create ZyxEditMember>>openOn: class and instance methods
9.1. Create the following methods:
ZyxEditMember class>>openOn: aMember

self new openOn: aMember.
ZyxEditMember>>openOn: aMember

self eMBConn: aMember.
self openView.

9.2. Save the image.

9.2. Test
9.2.1. Open 2 views

9.3. In the workspace execute the following code:
FW CH 9. Test 2 views of same object."
[

| aDO |
aDO := ZyxMember new.
aDO name: 'DOName'.
ZyxEditMember openOn: aDO.
ZyxEditMember openOn: aDO.

]

The following 2 dialogs appear (if only 1 dialog is visible: move the visible dialog to the right to make the
second dialog visible):

Figure 9.1. 2 views of same object.

The LEFT dialog is the first dialog that was opened (with the first "ZyxEditMember openOn: aDO"). The
RIGHT dialog (the dialog with the focus) is the second dialog that was opened (with the second "ZyxEdit-
Member openOn: aDO").

9.2.2. Test non-transacted changes
Both views are of the same object. Changes to the objects made in either dialog are not transacted (trans-
acted changes will be discussed in the next section).
9.4. In the LEFT dialog: Change the name to DOName1. The new String object will be the new object
referenced by the ZyxMember object attribute name.
9.5. Click in the RIGHT dialog.

Figure 9.2. Non-transacted changes in a view are reflected in other views

Clicking in the RIGHT dialog changed the focus, causing the following:
• The String object entered in the text field in the left dialog was assigned to the ZyxMember object

attribute name.
• The right view (ZyxEditMemberView) is updated (and thus the current ZyxMember object attributes are

displayed).
9.6. In the RIGHT dialog: Change the name to DOName2.

Frameworks Getting Started
Tutorial
9. Multiple non-transacted views34

9.7. Click in the LEFT dialog.

Figure 9.3. Non-transacted changes to the same object can be made in multiple dialogs

Note that the attributes of the ZyxEditMember object can be changed in either dialog.
9.8. Close both views.

Frameworks Getting Started
Tutorial

10. Multiple views: transacted non-isolated 35

10. Multiple views: transacted non-isolated
The problem with the situation in the previous chapter is that an object can be changed from any view,
overwriting the changes made in any other views. This undesireable situation can be avoided by transact-
ing changes.
This chapter will explore non-isolated transactions (uncommitedRead transactions). uncommitedRead is
the default setting for transaction contexts. If a context is uncommitedRead, then the dialogs belonging to
that context will display the transacted changes from other dialogs.
For a complete overview and a detailed description of transaction concepts, see the Object Behavior
Framework User’s Guide chapter ‘1.3. Transactions’ (page 27).
In this chapter you will:
• Define DP ZyxEditMember as a transacted process using the DPB.
• Define DO variable ZyxMember>>name as transacted using the ONB.
• Open the Transaction Browser to monitor the transacted changes. For more information about the

Transaction Browser, see the Object Behavior Framework User’s Guide chapter ‘3.6. Transaction
Browser’ (page 127).

• Test transacted changes:
• View transaction information in the TB, including TrLevel1 and object version information for the

active and inactive context.
• Attempt to assign an object to a transacted variable that is locked by a transaction context that is not

active.
• Abort a transaction using the TB.

10.1. Define ZyxEditMember as transacted process
10.1. Open the DPB for ZyxEditMember.
10.2. In the Processes Hierarchy box: Select eMPConn.
10.3. For Transaction Main: In column Value row Transaction handling: Click on None. 3 radio buttons
appear.
10.4. Select Defined:

Figure 10.1. Defining transaction handling for ZyxEditMember (Transaction Main)

10.5. Click elsewhere in the DPB to enter the change. Note the default settings for the transacted pro-
cess (the transaction context is non-isolation mode and is enabled):

Figure 10.2. Default settings in the DPB for Transaction Main

10.6. Save all changes.
10.7. Close the DPB.

10.2. Specify ZyxMember>>name as transacted
The DP is now specified as being transacted. However, changes made to DO attribute ZyxMem-
ber>>name will not be transacted unless the actual attribute is defined as being transacted with the ONB
(this creates the necessary methods for supporting transaction behavior for the attribute).
10.8. Open the ONB on ZyxMember.
10.9. Select variable name.

Frameworks Getting Started
Tutorial
10. Multiple views: transacted non-isolated36

10.10. Check the checkbox Transacted:

Figure 10.3. Specifying ZyxMember>>name as transacted

10.11. Save the changes.
10.12. Save the image.

10.3. Transaction Browser
10.13. From the System Transcript: Select micFrameworks / Browse Transactions. The Transaction
Browser (TB) is opened:

Figure 10.4. Transaction Browser dialog

Note: MicFwTechnicalTransactionContext’s may be present and displayed in the transaction browser.
These contexts used by various Frameworks tools, and therefore are of no concern at the moment. Note
that there are no other contexts open at the moment.

10.4. Test
10.14. In the workspace execute the following code:
FW CH 10. Multiple views: Transacted non-isolated."
[

| aDO |
aDO := ZyxMember new.
aDO name: 'DOName'.
ZyxEditMember openOn: aDO.
ZyxEditMember openOn: aDO.

]

The following 2 dialogs appear (if only 1 dialog is visible: move the visible dialog to the right to make the
second dialog visible):

Figure 10.5. Open 2 views of transacted object attribute

The LEFT dialog is the first dialog that was opened (with the first "ZyxEditMember openOn: aDO"). The
RIGHT dialog (the dialog with the focus) is the second dialog that was opened (with the second "ZyxEdit-
Member openOn: aDO").

10.4.1. No transacted changes
10.4.1.1. View transaction info in TB

Frameworks Getting Started
Tutorial

10. Multiple views: transacted non-isolated 37

10.15. In the TB: Select Transactions / Update. Note that 2 MicFwTransactionContext’s were created
when the dialogs were opened:

Figure 10.6. Transaction contexts created when 2 views of object opened

The inactive context (the context without the asterisk ("*") in front of it) is assigned to the LEFT dialog that
is currently not selected (does not have the focus). The active context (the context with the asterisk ("*")
in front of it) is assigned to the RIGHT dialog that is currently selected (has the focus).
10.4.1.1.1. Display TrLevels (only TrLevel1) of contexts
10.16. Select the active context. The TrLevels for the context are displayed in the upper-middle box (only
TrLevel1 exists).

Figure 10.7. No transacted changes for the object whose attributes havent been changed in the view

10.17. Select the inactive context. Note that only TrLevel1 exists.
10.4.1.1.2. Display contents (empty) of TrLevel1 for contexts
10.18. Select the active context.
10.19. Select TrLevel1. The upper-right box displays the object versions (transacted changes for varia-
bles while the transaction context was active) for the selected TrLevel (empty, since no transacted chan-
ges were made while this context was active).

Figure 10.8. No transacted changes for the object whose attributes havent been changed in the view

10.20. Select the inactive context.
10.21. Select TrLevel1. Note that this TrLevel1 also contains no object versions.

Frameworks Getting Started
Tutorial
10. Multiple views: transacted non-isolated38

10.4.2. Make a transacted change in the LEFT dialog
10.22. Select the LEFT dialog. This causes the transaction context assigned to the LEFT dialog to be acti-
vated (and the context for the RIGHT dialog is deactivated).
10.23. In the LEFT dialog: Change the name to DOName1. This change is transacted because the DP
instance for the dialog is transacted AND ZyxMember>>name is specified as a transacted variable.
10.24. Click in the RIGHT dialog. Note that the change in focus updates both views.

Figure 10.9. The second view of an object is updated after transacted changes in the first view

10.4.2.1. View transaction info in TB
10.4.2.1.1. For the inactive context / TrLevel1: Display objects with transacted changes to variables
10.25. In the TB: Select the inactive (for the LEFT dialog) MicFwTransactionContext.
10.26. Select TrLevel1. Note the contents of the upper-right box in the TB (Note: If the ZyxMember object
is not displayed, refresh the TB view by clicking on the other Transaction Context).

Figure 10.10. In the TB: Objects with transacted changes for selected context / TrLevel1

a ZyxMember is an object whose variable(s) reference an object version (ie, transacted changes have
been made to the variable) that is in the selected TrLevel (TrLevel1) of the selected transaction context
(the inactive context).
10.4.2.1.2. For the object: Display variables with transacted changes
10.27. In the TB: Select a ZyxMember. Note that in the lower left box the variable name appears. The
lower left box contains for the selected object (in the upper right box) all variables with transacted changes.

Figure 10.11. In the TB: Variables with transacted changes for selected object

10.4.2.1.3. For the variable: Display version value (uncommitted target) of object version
10.28. If the Variable value button is displayed: Click on the button to display the Version value button.
10.29. Select name. Note that the version value ’DOName1’ is displayed.

Figure 10.12. In the TB: Version value (uncommitted target) for selected variable

The "version value" is also referred to as the "uncommitted target". The version value is the last object that
was assigned to the variable while the selected context was active and the selected TrLevel was the high-
est TrLevel.
10.4.2.1.4. For the variable: Display variable value (committed target) of object version
10.30. Click on Version value. The button becomes Variable value. Note that the variable value

Frameworks Getting Started
Tutorial

10. Multiple views: transacted non-isolated 39

’DOName’ is displayed.

Figure 10.13. In the TB: Variable value (committed target) for selected variable

10.4.2.2. What occurred when ’DOName1’ was entered in the LEFT dialog
When a new object was "assigned" to the object attribute in the LEFT dialog, the following occurred:
• An version object was created for and assigned to the attribute. This version object references 2

objects:
• The variable value (committed target): The object (’DOName’) that was reference by the variable

before any transacted changes
• The version value (uncommitted target): The last object (’DOName1’) assigned to the variable

while the transaction context was active and the selected TrLevel was the highest TrLevel.
• The version value was displayed in the LEFT dialog.
The version value was also displayed in the RIGHT dialog when the dialog was updated (obtained the
focus).

10.4.3. Attempt to assign object to variable locked by another transaction
When a new object is assigned to a transacted variable while a context is active, then the variable is
locked by that context. If an attempt is made to assign an object to the variable while a different context is
active, a transaction write conflict exception is thrown.
10.31. In the RIGHT dialog: Change the name to DOName2.
10.32. Click in the LEFT dialog. A transaction write conflict exception is thrown.
10.33. Close the debugger window.

10.4.4. Abort a transaction context using TB
10.34. In the TB: Make sure that TrLevel1 of the the transaction context that contains the transacted chan-
ges is selected.
10.35. Click Abort. This aborts TrLevel1, which also aborts the context (a context is always aborted if
TrLevel1 is aborted), which also aborts the changes that were made in the dialog. Note that the transaction
context no longer exists in the TB. Note also that the dialog content has been updated:

Figure 10.14. Aborted changes as reflected in the views

Note: Normally transacted changes are aborted or committed by clicking on a dialog button such as "Can-
cel" or "Accept changes". Adding such buttons to the dialog will be demonstrarted later in this tutorial.

10.4.5. Assign new object to transacted variable (in RIGHT dialog)
10.36. In the RIGHT dialog: Change the name to ’DOName2’.
10.37. Click on the LEFT dialog. Note that the dialog was updated. The variable is now locked by the con-
text for the RIGHT dialog (changing the variable in the LEFT dialog will throw a transaction write conflict
exception).

10.4.6. Close the dialogs
10.38. Close the RIGHT ZyxEditMember dialog. Note in the TB that the transaction context no longer
exists.
10.39. Attempt to close the LEFT ZyxEditMember dialog. Note that a "MicFwTransactionContext is not
running" exception is thrown. This is because the context was aborted from the TB, not by clicking on a
button in the dialog. Caution should be exerted when aborting or committing contexts or TrLevels within
the TB.
10.40. Close the debugger window. The ZyxEditMember dialog cannot be closed.

Frameworks Getting Started
Tutorial
11. Multiple views: transacted isolated40

11. Multiple views: transacted isolated
Sometimes you may not want the versioned objects from other dialogs to be displayed in a dialog (ie, you
want only the version values to be displayed). This can be accomplished by specifying the Transaction
Main for the DP to be in isolatedMode. This chapter will explore isolated transactions.
In this chapter you will:
• Define DP ZyxEditMember as a transacted ISOLATED process using the DPB.
• Test transacted changes for isolated contexts.

11.1. Define ZyxEditMember as transacted ISOLATED process
11.1. In the DPB: For eMPConn Main Transaction: Set Isolate mode to True (click in column Value in

the row Isolate to display radio buttons; select True):

Figure 11.1. Defining ZyxEditMember as an ISOLATED transacted process in the DPB

11.2. Save all changes.
11.3. Close the DPB.
11.4. Save the image.

11.2. Test
11.5. In the workspace execute the following code:
FW CH 11. Multiple views: Transacted isolated."
[

| aDO |
aDO := ZyxMember new.
aDO name: 'DOName'.
ZyxEditMember openOn: aDO.
ZyxEditMember openOn: aDO.

]

11.6. In the LEFT dialog: Change name to DOName1.
11.7. Click in the RIGHT dialog. The new string object is NOT displayed.

Figure 11.2. Isolated transacted changes in multiple views

11.8. Close both ZyxEditMember dialogs.

Frameworks Getting Started
Tutorial

12. Create database 41

12. Create database
In this chapter you will:
• Create a database using IBM DB Universal Database Version 5. This database will be used to create

persistent objects.
NOTE: If you dont have DB2, you can download a 60-day trial version of DB2 Version 5.2 Single User for
Windows NT from IBM for free at www.ibm.com. If you decide to use different database software, be
sure to make appropriate changes throughout the rest of this tutorial.
Note: The actual steps for creating the database on your computer may differ, even if you are using Win-
dows NT and DB2 Version 5.

12.1. Create database
12.1. From the Start Menu: Select Programs / DB2 for Windows NT / Administration Tools / Control

Center. The following dialog appears:

Figure 12.1. DB Control Center dialog

12.2. Expand the Systems tree until Databases appears.
12.3. Right-click on Databases.
12.4. Select Create / New.... The Create database SmartGuide dialog appears.
12.5. In the text field New database name: Enter ZYX:

Figure 12.2. Defining the new database name

12.6. Click Done. The database is created (creating the database may take several minutes):

Figure 12.3. New DB2 database in the Control Center

12.2. Add database as machine datasource
12.7. From the Start menu: Select Settings / System Controls. The System Controls dialog appears.

Frameworks Getting Started
Tutorial
12. Create database42

12.8. Double-click on ODBC Data Sources. The ODBC Data Source Administrator dialog appears.

Figure 12.4. ODBC Data Source Administrator dialog

12.9. In the User DSN tab: Click Add.... The Create New Datasource dialog appears:

Figure 12.5. Create New Datasource dialog

12.10. Click on IBM DB2 ODBC DRIVER.
12.11. Click Continue. The IBM DB2-ODBC-Driver - Add dialog appears.

Figure 12.6. IBM DB2-ODBC-Driver add dialog

12.12. From the drop-down list Datasource name: Select ZYX.

Frameworks Getting Started
Tutorial

12. Create database 43

12.13. Click OK.The ODBC Data Source Administrator dialog appears.

Figure 12.7. ODBC Data Source Administrator dialog after datasource ZYX added

12.14. Click OK.

Frameworks Getting Started
Tutorial
13. Making application ZyxTutorial persistent-capable44

13. Making application ZyxTutorial persistent-capable
In this chapter you will:
• Add the prerequisite for application ZyxTutorial for support of object persistence with ODBC
13.1. In the Visual Age Organizer: Select the application ZyxTutorial.
13.2. Select Applications / Prerequisites.
13.3. Click Change.
13.4. In the Available list: Select MicFwPersistenceOdbc.
13.5. Click >>.
13.6. Click OK.

Figure 13.1. Adding MicFwPersistenceOdbc as a ZyxTutorial prerequisite

13.7. Click OK.

Frameworks Getting Started
Tutorial

14. Make DO ZyxMember persistent 45

14. Make DO ZyxMember persistent
In this chapter you will:
• In the ONB: Specify a variable type for ZyxMember>>name. A type is required for persistence-support

(ie, the object referenced by ZyxMember>>name will be stored in a database, and a database requires
a specific type). The type is specified with the Type Editor. For more information about the Type Editor,
see the Object Behavior Framework User’s Guide chapter ‘3.4. Type Editor’ (page 124)

• In the ONB: Specify ZyxMember>>name as persistent. This is required in order to create the necessary
accessors for ZyxMember>>name that support persistence.

• In the ONB: Add variable ZyxMember>>id (type Integer, persistent). Each persistent ZyxMember
instance must have at least 1 variable that serves as a unique identifier of the instance. This variable is
know as the key variable for ZyxMember and will be the key for the table that contains persistent
ZyxMember objects.

14.1. For ZyxMember>>name: Specify Type, Persistent (Transacted)
14.1. Open the ONB on ZyxMember.
14.2. Select name.
14.3. Right-click.
14.4. Select Set type. The Type Editor on <name> appears.

Figure 14.1. Type Editor dialog

14.5. Select class String.
14.6. In the field Size: Enter 44 (this value should be greater than the anticipated maximum length of a
string entered for ZyxMember>>name).

Figure 14.2. Type Editor class settings for ZyxMember>>name

IMPORTANT: The size of the string must be specified to avoid an error in the database.

Frameworks Getting Started
Tutorial
14. Make DO ZyxMember persistent46

14.7. Click OK. Note that the type of the variable is now defined in the ONB.

Figure 14.3. ZyxMember>>name type information as displayed in ONB

14.8. Select name.
14.9. Check the checkbox Persistent. This specifies that name references persistent objects (String
objects).

14.2. Add ZyxMember>>id, specify Type, Persistent (Transacted)
14.10. Add the variable id to ZyxMember.
14.11. For id: Check the checkbox Key. This specifies that id is the unique identifier for the ZyxMember
instances. Note: A class must have at least 1 key variable in order to be made persistent.
14.12. Type id as Integer (leave Size and Scale blank).
14.13. For id: Check the checkbox Persistent (Transacted will be checked automatically). This specifies
that id references persistent objects (Integer objects). The ONB dialog should be similar to the following:

Figure 14.4. ZyxMember>>id settings in the ONB

14.14. Save the changes.
14.15. Close the ONB.
14.16. Save the image.

Frameworks Getting Started
Tutorial

15. Make DP ZyxEditMember persistent 47

15. Make DP ZyxEditMember persistent
In this chapter you will:
• In the DP: Specify that DP ZyxEditMember supports persistent contexts.
• Create method ZyxEditMember>>persistenceObjectManager (this method must be created if persistent

transaction handling is selected for the process in the DPB). The significance of this method will be
explained later.

15.1. Enable ZyxEditMember persistent contexts
15.1. In the DPB for ZyxEditMember: For eMPConn Transaction Main: Set Persistence Context to

True.

Figure 15.1. Setting ZyxEditMember Transaction Main as persistent

15.2. Save the changes.
15.3. Close the DPB.

15.2. Create ZyxEditMember>>persistentObjectManager
15.4. Create the following method:
ZyxEditMember>>persistenceObjectManager

| pom |
pom := MicFwPersistenceManagerOdbc named: 'ZyxPom'.
pom isConnected ifFalse: [pom connectWithDriverComplete].
^pom.

15.5. Save the image.

Frameworks Getting Started
Tutorial
16. Create POM48

16. Create POM
In this chapter you will:
• Configure the POM Generator: The POM Generator is used to create a POM (Persistent Object Man-

ager) for specified persistent classes and the specified type of database. A POM manages the interface
between the instantiations of a persistent class and the database. For more information about the POM
Generator, see the Persistence Framework User’s Guide chapter ‘10.3. The POM Generator Tool’
(page 221).

• Store the POM Generator settings globally.
• Generate the POM "ZyxPom".
• View the contents of the POM (mappings between the persistent objects and the database).
• Store the POM.

16.1. Configure POM Generator settings
16.1. From the System Transcript: Select micFrameworks / Persistence Tools / Object Net -> POM

Generator. The POM Generator dialog is opened.

Figure 16.1. POM Generator dialog

16.1.1. Add ZyxMember to the POM possible classes list
The classes that will be managed by the POM must specified.
16.2. In the Possible classes: box: Double-click on MicFwModelObject.
16.3. In the Possible classes: box: Double-click on MicFwDomainObject.
16.4. In the Possible classes: box: Select on ZyxMember.
16.5. Click >>.

Figure 16.2. Selecting ZyxMember in the POM possible classes list

16.1.2. Select the POM class
The POM class determines what type of database the POM will interface with.
16.6. From the POM Class: drop-down list: Select MicFwPersistenceManagerOdbc.

Figure 16.3. Selecting the POM class

16.1.3. Configure the POM
The POM must be configured for the particular version of the database.

Frameworks Getting Started
Tutorial

16. Create POM 49

16.7. Click on Configurate POM.... The Configuration for: <unnamed POM> dialog appears:

Figure 16.4. Configurate POM dialog

16.8. From the menu: Select Configurations / Select.... The following dialog appears:

Figure 16.5. Dialog for selecting a POM configuration

16.9. Select ODBC (ODBTalk) Pom for DB2 Version 5 (IBM DB2 Universal Database).
16.10. Click OK.
16.11. Click Close.

16.1.4. Store the POM Generator settings globally as ZyxPomGenerator
The settings for the POM Generator can be stored and then used again later.
16.12. In the POM Generator dialog: Select Generator / Store globally as....
16.13. In the Enter name dialog: Enter ZyxPomGenerator.

16.2. Generate POM
When the POM is generated the STOPF / ODBC tool is opened. The meaning of STOPF (Smalltalk
Object Persistence Framework) is historic in nature.
16.14. Click on Generate POM. The STOPF / ODBC dialog appears:

Figure 16.6. STOPF / ODBC dialog

Frameworks Getting Started
Tutorial
16. Create POM50

16.2.1. Close the POM Generator
16.15. In the POM Generator dialog: Click Close.
16.16. In response to Store Generator settings: Click No (the settings were just saved above).

16.2.2. View tables defined within POM
The object mapping between the persistent classes and the database tables can be viewed in the
STOPF.
16.17. From the Class: drop-down list: Select ZyxMember. Information about the class variables is dis-
played.
16.18. Click on table ZYXMEMBER (in the upper-right box). Information about the tables is displayed.

Figure 16.7. Viewing table information for tables defined within POM

16.3. Store the POM
16.19. From the STOPF / ODBC menu: Select Manager / Store Globally As....
16.20. In response to Enter global name for persistence manager: Enter ZyxPom.
16.21. Click OK. Notice the name of the POM in the STOPF / ODBC dialog title bar.
16.22. Save the image.

Frameworks Getting Started
Tutorial

17. Generate table ZYXMEMBER using POM ZyxPom 51

17. Generate table ZYXMEMBER using POM ZyxPom
In this chapter you will:
• Connect the POM to database ZYX using the STOPF / ODBC tool. For more information about the

STOPF / ODBC tool, see the Persistence Framework User’s Guide chapter ‘10.2. The STOPF tool’
(page 196).

• Generate DDL (Data Definition Language) code for database ZYX using the POM. The DDL defines
the structure of the database for storing persistent objects in machine- and human-readable form.

• Create a table in the ZYX database by executing the DDL code using the ISQL tool. For more informa-
tion about the ISQL tool, see the Persistence Framework User’s Guide chapter ‘10.4. Interactive
SQL’ (page 225).

17.1. Connect POM to database
17.1. From the STOPF/ODBC dialog menu: Select Manager / Connect to database. The Select Data

Source dialog appears:

Figure 17.1. Connecting POM to a database: Select Data Source dialog.

17.2. Select the Machine Data Source tab.
17.3. Select ZYX.

Frameworks Getting Started
Tutorial
17. Generate table ZYXMEMBER using POM ZyxPom52

17.4. Click OK. The Connect to DB2 Database dialog appears.

Figure 17.2. Connect to DB2 Database dialog

17.5. Enter your User-ID (typically db2admin).
17.6. Enter your Password (typically db2admin).
17.7. Click OK. "connected" appears at the top of the STOPF/ODBC dialog.

17.2. Generate DDL
17.8. From the STOPF / ODBC menu: Select Schema / Export. The following dialog appears:

Figure 17.3. Dialog for choosing tables for DDL export

17.9. Select (click on) ZyxMember.
17.10. Click Choose. The following dialog appears:

Figure 17.4. Dialog for selecting target datbase for DDL export

17.11. Double-click on IBM DATABASE 2. A Workspace window is opened which contains the DDL code
(plus a ";" semicolon character at the end) required to create the needed tables:

Figure 17.5. DDL code for creating tables

Frameworks Getting Started
Tutorial

17. Generate table ZYXMEMBER using POM ZyxPom 53

17.3. Execute DDL
17.12. From the System Transcript menu: Select micFrameworks / Persistence Tools / Interactive
SQL. The Interactive SQL dialog is opened.

Figure 17.6. Interactive SQL dialog

17.3.1. Select POM
17.13. Select Manager / Choose.... The following dialog appears:

Figure 17.7. Dialog for selecting POM for ISQL dialog

17.14. Select MicFwPersistenceManagerOdbc<ZyxPom>.
17.15. Click Choose.

17.3.2. Execute DDL against database to create ZYX:ZYXMEMBER
17.16. Copy the DDL code from the Workspace to the Interactive SQL dialog upper box.
17.17. Delete the last semicolon (";") from the DDL code:

Figure 17.8. DDL code in the ISQL dialog (with trailing colon deleted)

17.18. In the Interactive SQL dialog: Select Statement / Execute once. The message "*** ready ***"
appears.
17.19. Select Statement / Commit. The message "*** commit ***" appears. The table ZYXMEMBER has
been created.
17.20. Close the Workspace that contains the SQL commands.
17.21. Close the ISQL dialog.
17.22. In response to "Disconnect the POM?": Click No.
17.23. Close the STOPF dialog.
17.24. In response to "Disconnect the POM?": Click No.
17.25. Save the image.

Frameworks Getting Started
Tutorial
18. Creating , displaying, editting persistent DO’s in a table using Smalltalk54

18. Creating , displaying, editting persistent DO’s in a table using
Smalltalk

In this chapter you will:
• Create persistent objects in table ZYXMEMBER (using Smalltalk). The table ZYXMEMBER currently

contains no rows, since no objects have been stored to the table.
• Display the data in the table (using DB2).
• Display the data in the table (using Smalltalk) with the ZyxEditMemberView.
• Edit the persistent objects in the table (using Smalltalk) using the ZyxEditMemberView.

18.1. Creating persistent objects in table ZYXMEMBER (using Smalltalk)
18.1. Execute the following code to store 2 instances to the table (note: you may have to reconnect to the

database).
FW CH 18. Create 2 ZyxMember instances in table ZYXMEMBER."
[

| pom con mem |
pom := MicFwPersistenceManagerOdbc named: 'ZyxPom'.
pom isConnected ifFalse: [pom connectWithDriverComplete].
con := pom newPersistenceContext.
con beginTransaction.
mem := ZyxMember newPersistent.
mem id: 1.
mem name: 'memberWithId1'.
mem := ZyxMember newPersistent.
mem id: 2.
mem name: 'memberWithId2'.
con commitTransaction.

]

18.2. View data in table (using DB2)
18.2.1. Disconnect the POM manager from the database

IMPORTANT: The POM must be disconnected from the database. If not disconnected from the database,
the POM will have a lock on the database and the Sample Contents will not be displayed.
18.2. From the System Transcript: Select micFrameworks / Browse Persistence Manager....
18.3. In the Choose Persistence Manager dialog: Double-click on MicFwPersistenceManage-
rOdbc<ZyxPom>. The STOPF/ODBC ZyxPom (connected) dialog appears.
18.4. From the STOPF/ODBC dialog: Selected Manager / Disconnect from database.

18.2.2. Display Sample contents for ZYXMEMBER.
18.5. In the Control Center: Right-click on table ZYXMEMBER.
18.6. Select Sample contents. Note the contents of the database:

Figure 18.1. Sample contents of ZyxMember in database

18.3. Load ZyxMember instances from table ZYXMEMBER (using Smalltalk)
18.7. Execute the following code to load the 2 ZyxMember instances from the database and display in a
ZyxEditMemberView dialog (you will have to connect to the database).
FW CH 18. Load 2 ZyxMember instances from table ZYXMEMBER."
[

| pom con all mem |
pom := MicFwPersistenceManagerOdbc named: 'ZyxPom'.
pom isConnected ifFalse: [pom connectWithDriverComplete].
con := pom newPersistenceContext.

Frameworks Getting Started
Tutorial

18. Creating , displaying, editting persistent DO’s in a table using Smalltalk 55

con beginTransaction.
all := pom getAllInstancesOf: ZyxMember.
con commitTransaction.
ZyxEditMember openOn: all first.
ZyxEditMember openOn: all last.

]

The following dialogs are opened:

Figure 18.2. ZyxEditMemberView views of 2 objects

Note that each view is of a different object. Making changes in one dialog does not affect the contents of
the other dialog.

18.4. Edit the persistent objects in the table (using Smalltalk)
18.8. Change the names in the dialogs to memberWithId1new and memberWithId2new.
18.9. Close both dialogs.
18.10. Execute the above code again. Note that the previous changes were saved to the database:

Figure 18.3. ZyxEditMemberView’s show that changes were saved to the database

18.11. View the Sample Contents for table ZYX:ZYXMEMBER. Note that the changes have been saved to
the database.

Figure 18.4. Changes made in dialogs are saved to the database

Frameworks Getting Started
Tutorial
19. Add commit / abort buttons to ZyxEditMemberView56

19. Add commit / abort buttons to ZyxEditMemberView
ZyxEditMember is a subclass of MicFwDomainProcess, which provides standard buttons for aborting and
committing transacted changes with (...AndCloseView) or without (...AndBegin) closing the view. These
buttons can be added to the view with the Quick Form option.
In this chapter you will:
• Add commitAndBegin and abortAndBegin buttons to ZyxEditMemberView. These buttons will com-

mit / abort the transacted changes that have been entered in the view without commiting / aborting the
transaction context for the view (and without closing the view).

• Add commitAndCloseView and abortAndCloseView buttons to ZyxEditMemberView. These buttons
will commit / abort the transacted changes that have been entered in the view AND commit / abort the
transaction context for the view AND close the view.

• Test the buttons on the persistent objects in table ZYXMEMBER.
Note: To copy parts in the CE:
• Press and hold down the CTRL key.
• Left-click and hold the mouse on the part to be copied.
• Move the mouse pointer to the location that the copied part should be copied to.
• Release the mouse button and CTRL key.

19.1. Add commit / abort buttons
19.1.1. Add commitAndBegin button

19.1. Open the Composition Editor on ZyxEditMemberView (double-click on ZyxEditMemberView in
the Visual Age Organizer).

19.2. Add a Push Button to ZyxEditMemberView.

Figure 19.1. Push button part in the parts palette

19.3. Change the Push Button property object to commitAndBegin.
19.4. Change the Push Button property partName to commitAndBegin_.

19.1.2. Add abortAndBegin button
19.5. Add a Push Button to ZyxEditMemberView.
19.6. Change the Push Button property object to abortAndBegin.
19.7. Change the Push Button property partName to abortAndBegin_.

19.1.3. Add commitAndCloseView button
19.8. Add a Push Button to ZyxEditMemberView.
19.9. Change the Push Button property object to commitAndCloseView.
19.10. Change the Push Button property partName to commitAndCloseView_.

19.1.4. Add abortAndCloseView button
19.11. Add a Push Button to ZyxEditMemberView.
19.12. Change the Push Button property object to abortAndCloseView.
19.13. Change the Push Button property partName to abortAndCloseView_.

Figure 19.2. ZyxEditMemberView with commit and aborts buttons (4)

19.14. From the Composition Editor menu: Select File / Save Part.

Frameworks Getting Started
Tutorial

19. Add commit / abort buttons to ZyxEditMemberView 57

19.15. Close the Composition Editor.
19.16. Save the image.

19.2. Test
19.2.1. Commiting / aborting changes without closing the view

19.2.1.1. Open view of persistent object
19.17. Execute the following code to load the first instance of ZyxMember from the database and display in
a dialog.
FW CH 19. Load 1 ZyxMember instance from table ZYXMEMBER."
[

| pom con all mem |
pom := MicFwPersistenceManagerOdbc named: 'ZyxPom'.
pom isConnected ifFalse: [pom connectWithDriverComplete].
con := pom newPersistenceContext.
con beginTransaction.
all := pom getAllInstancesOf: ZyxMember.
con commitTransaction.
ZyxEditMember openOn: all first.

]

The following dialog is opened:

Figure 19.3. ZyxEditMemberView with commit / abort buttons

19.2.1.2. Make transacted change to persistent object in view
19.18. Change the name to memberWithId1v2.
19.19. Open the TB. Note the transaction contents:

Figure 19.4. Version value (uncommitted target) for ZyxMember>>name in the TB

19.20. View the databank Sample contents. Note that the change has NOT been stored to the database.

19.2.1.3. Commit transacted change without closing the view
19.21. Click commitAndBegin.
19.22. Click in the TB. Note that the transacted changes have been implemented:

Figure 19.5. Version value (none) after change committed in view

19.23. View the databank Sample contents. Note that the change has been stored to the database.

Frameworks Getting Started
Tutorial
19. Add commit / abort buttons to ZyxEditMemberView58

19.2.1.4. Make transacted change to persistent object in view
19.24. Change the name to memberWithId1v3.
19.25. Open the TB.
19.26. Select Transactions / Update. Note the transaction contents.

19.2.1.5. Abort transacted changes without closing the view
19.27. Click abortAndBegin. Note that memberWithId1v2 is displayed.
19.28. Click in the TB. Note that the transacted changes have been aborted.
19.29. View the databank Sample contents. Note that the change has NOT been stored to the database.

19.2.2. Commiting / aborting changes and closing the view
19.30. Perform the tests as above, except use the commitAndCloseView and the abortAndCloseView
buttons.

Frameworks Getting Started
Tutorial

20. Adding a variable to a persistent class 59

20. Adding a variable to a persistent class
Adding a variable to a persistent class involves:
• Adding the variable to the class in the ONB.
• Modifying the views that will display the variable contents.
• Modifying the POM.
• Modifying the database (regenerating the database would require first deleting the database, resulting

in the loss of persistent objects stored in the database).
In this chapter you will:
• In the ONB: Add ZyxMember>>weight, which represents the weight of a member.
• In the CE: Add field "weight" to ZyxEditMemberView
• Regenerate POM ZyxPom.
• In DB2: Add column WEIGHT to database ZYX table ZYXMEMBER.
• Test.

20.1. Add ZyxMember variable weight
20.1. In the ONB: Add the variable ZyxMember>>weight with:
• Type Integer (leave Size and Scale blank).
• Check Persistent (Transaction).
20.2. Save the changes.
20.3. Close the ONB.

20.2. Add text field for weight to ZyxEditMemberView
20.4. Add a label to ZyxEditMemberView.
20.5. Change the label property object to weight.
20.6. Add a text field to the view.
20.7. Change the text field property partName to weight_.

Figure 20.1. Adding weight field to ZyxEditMemberView

Note: The parts in a view may be moved within the view several times throughout this tutorial.
20.8. Select File / Save Part.
20.9. Close the CE.

20.3. Regenerate POM
20.3.1. Reload POM Generator

The POM Generator settings were saved earlier under the global name ZyxPomGenerator.
20.10. From the System Transcript: Select micFrameworks / Persistence Tools / Object Net -> POM
Generator. The POM Generator dialog appears.
20.11. Select Generator / Choose.
20.12. In response to Choose a stored POM Generator: Double-click on ZyxPomGenerator.

20.3.2. Generate POM
20.13. Click on Generate POM. The STOPF/ODBC tool opens.

20.3.2.1. View the new mapping
20.14. In the STOPF/ODBC: Select ZyxMember from the Class drop-down list.
20.15. Click on ZYXMEMBER in the upper right-window. Note that the POM mapping has been updated

Frameworks Getting Started
Tutorial
20. Adding a variable to a persistent class60

for the new column in the table.

Figure 20.2. New mapping in the STOPF / ODBC dialog for ZyxMember

20.3.3. Store the POM
20.16. From the STOPF / ODBC menu: Select Manager / Store Globally As....
20.17. In response to Enter global name for persistence manager: Enter ZyxPom.
20.18. Click OK. Notice the name of the POM in the STOPF / ODBC dialog title bar.
IMPORTANT: The previous POM was overwritten with NO warning. Be careful not to inadvertantly over-
write a POM.
20.19. Close the POM Generator and STOPF/ODBC dialogs.
20.20. Save the image.

20.4. Add column WEIGHT to ZYX:ZYXMEMBER
Note: The POM should not be connected to database ZYX.
20.21. In the DB2 Control Center: Double-click on table ZYXMEMBER (in database ZYX). The Alter -
ZYXMEMBER dialog is opened.
20.22. Select tab Columns.

Figure 20.3. Tab Columns in the Alter ZYXMEMBER dialog

20.23. Click Add. The dialog Add Column opens.
20.24. In the Column name field: Enter WEIGHT.

Frameworks Getting Started
Tutorial

20. Adding a variable to a persistent class 61

20.25. From the Data type Drop-down list: Select INTEGER.

Figure 20.4. Selecting the data type for the added column

20.26. Click Add.
20.27. Click Close.
20.28. In the Alter - ZYXMEMBER dialog: Click OK. The column is added to the table.

20.5. Test
20.5.1. Open view of persistent object

20.29. Execute the following code to load the first instance of ZyxMember from the database and display in
a dialog.
FW CH 20. Load 1 ZyxMember instance from table ZYXMEMBER."
[

| pom con all mem |
pom := MicFwPersistenceManagerOdbc named: 'ZyxPom'.
pom isConnected ifFalse: [pom connectWithDriverComplete].
con := pom newPersistenceContext.
con beginTransaction.
all := pom getAllInstancesOf: ZyxMember.
con commitTransaction.
ZyxEditMember openOn: all first.

]

The following dialog is opened:

Figure 20.5. ZyxEditMember view with weight label / text field

20.5.2. Enter object of valid type (Integer) for weight
Entering a weight of valid type (such as 1234) and clicking commitAndBegin will result in the entered data
being stored to the database.
20.30. Change weight to 1234.
20.31. Click on commitAndBegin.

Figure 20.6. Changing weight to a valid value in ZyxEditMemberView

Frameworks Getting Started
Tutorial
20. Adding a variable to a persistent class62

20.32. View the databank Sample contents. Note that the change has been stored to the database.

Figure 20.7. New weight stored to database

20.5.3. Enter object of invalid type (String) for weight
Entering a weight of invalid type (such as ’abc’) and clicking commitAndBegin will result in the entered data
not being stored to the database.
20.33. Change weight to abc.
20.34. Click on commitAndBegin.

Figure 20.8. Attempting to change weight to an invalid value in ZyxEditMemberView

20.35. View the databank Sample contents. Note that weight = 1234.

Frameworks Getting Started
Tutorial

21. Validate range of entered data in ZyxEditMemberView 63

21. Validate range of entered data in ZyxEditMemberView
A value of the proper type entered in a view field can be rejected if it is not within a range specified in the
DO class method initializeValidation. For more information about validation, see the Application Frame-
work User’s Guide chapter ‘4.7. Validation’ (page 197).
In this chapter you will:
• Create method ZyxMember class>>initializeValidation
• Change the transaction main context for ZyxEditMember to non-persistent (so that the database is not

used).
• Test.

21.1. Add ZyxMember class>>initializeValidation
21.1. Create the following method:
ZyxMember class>>initializeValidation

self validateWrite: #weight
using: [:value | (value notNil and: [value > 20])
and: [value < 500]]

21.2. Save the class.

21.2. Change ZyxEditMember Transaction main to non-persistent context
21.3. In the DPB for ZyxEditMember: For Transaction Main: Deselect Persistence context.
21.4. Save all changes.
21.5. Close the DPB.
21.6. Save the image.

21.3. Test
21.7. Execute the following code in the workspace (note the line for initializeValidation):
FW CH 21. Validate range of ZyxMember>>weight."
[

| aDO |
ZyxMember initializeValidation.
aDO := ZyxMember new.
aDO name: 'DOName'.
aDO weight: 200.
ZyxEditMember openOn: aDO.

]

Note that weight = 200 (within the valid range).
21.8. Enter 20 for the weight (min = 21).
21.9. Click in the "name" text field. Note that weight reverts to 200.
21.10. Enter 21.
21.11. Click in the "name" text field. Note that weight stays at 21.
21.12. Enter 500 (max = 499).
21.13. Click in the "name" text field. Note that weight stays at 21.
21.14. Enter 499.
21.15. Click in the "name" text field. Note that weight stays at 499.
21.16. Close the view.

Frameworks Getting Started
Tutorial
22. Create DO ZyxClub64

22. Create DO ZyxClub
In this chapter you will:
• Create DO ZyxClub.
• Create ZyxClub>>members (transacted, persistent) with variable "type" as a collection of any number

of ZyxMember instances using the Relationship Editor (RE) (for more information about the Relation-
ship Editor, see the Object Behavior Framework User’s Guide chapter ‘3.5. Relationship Editor’
(page 125)) to:
• Establish a relationship between ZyxClub>>members and ZyxMember. The relationship will be

specified as being a primitive relationship, which means that the members attribute will reference
a collection of ZyxMember objects, but the ZyxMember objects will have no attribute that reference
the ZyxClub instance.

• Specify the cardinality of the relationship as 0..N. The cardinality specifies how many ZyxMember
instances are allowed in the collection referenced by ZyxClub>>members. The cardinality 0..N
means that 0 <= (number of ZyxMember instances in collection) <= infinity.

• Create ZyxClub>>currentMember. currentMember will reference the ZyxMember instance that is cur-
rently selected in ZyxEditClubView (to be created later).

22.1. Create MicFwDomainObject subclass ZyxClub.
22.1. In Visual Age Organizer: For ZyxApplication: Create a new part with:
• Part class: ZyxClub.
• Part type: Domain Object Class.
• Inherits from: MicFwDomainObject.

22.2. Add ZyxClub>>members and specify relationship / cardinality to ZyxMember
22.2. In the ONB on ZyxClub: Add instance variable ZyxClub>>members.
22.3. For members: Check Persistent (Transact).

22.2.1. Specify relationship
22.4. Select members.
22.5. Right-click on members.
22.6. Select Set Relationship. The Relationship Editor on variable <members> dialog is opened:

Figure 22.1. Relationship Editor dialog

Note that the source class / instance variable = ZyxClub>>members.
22.7. Check the checkbox Primitive.
22.8. In the Target Class drop-down list: Select ZyxMember.

22.2.2. Specify cardinality
22.9. In the box Source class: Check the checkbox N. The cardinality of the relationship is now 0..N.

Frameworks Getting Started
Tutorial

22. Create DO ZyxClub 65

The cardinality of this relationship specifies that ZyxClub>>members can reference from 0 to an unlimited
number of ZyxMember instances.

Figure 22.2. Defining cardinality in the Relationship Editor

22.10. Click OK. The RE dialog closes and the ONB regains the focus. Note the relationship and target
info displayed for ZyxClub>>members. Note that ZyxMember is also displayed in the ONB, since it is now
a part of the object net of ZyxClub. An object net is the complete set of all objects that are connected to
each other through relationships defined by the object attributes.

22.3. Add ZyxClub>>currentMember
22.11. In the ONB: Add instance variable ZyxClub>>currentMember.
22.12. For currentMember: Check Persistent (Transact).
22.13. Save the class.
22.14. Close the ONB.
22.15. Save the image.

Frameworks Getting Started
Tutorial
23. Create DP ZyxEditClub / modify DP ZyxEditMember66

23. Create DP ZyxEditClub / modify DP ZyxEditMember
In this chapter you will:
• Create DP ZyxEditClub. ZyxEditClub will be the DP for editting the attributes of the ZyxClub and

ZyxMember instances.
• In the DPB: Create connection eCPConn to ZyxEditClub.
• Specify DP ZyxEditMember as a child process of ZyxEditClub. For more information about child pro-

cesses, see the Object Behavior Framework User’s Guide chapter ‘1.3.4.7.3. Hierarchical contexts’
(page 36).

• In the DPB: Create base connection eCBConn to ZyxClub.
• In the DPB: Add child process connection eMPChConn from ZyxEditClub to ZyxEditMember.
• Create ZyxEditClub>>selectedMember accessors for the member that is currently selected in the

proccess.
• Create ZyxEditClub>>openOn:. openOn: establishes the base connection to ZyxClub and then sends

the openView message.
• Create ZyxEditMember>>edit. The message <edit> will be sent to the selected ZyxEditMember

instance when the Edit button (to be created later) is clicked in ZyxEditClubView.

23.1. Create MicFwDomainProcess subclass ZyxEditClub.
23.1. In Visual Age Organizer: Create a new part (do not open now) for ZyxApplication with:
• Part class: ZyxEditClub.
• Part type: Domain Process Class.
• Inherits from: MicFwDomainProcess.

23.2. Create connection eCPConn to ZyxEditClub
23.2. Open the DPB on ZyxEditClub.
23.3. In the Processes Hierarchy column: Click on ZyxEditClub.
23.4. In the Name/Value columns: In row Name: Change zyxEditClub to eCPConn (edit Club Process
Connection). This is the name of the connection to the process ZyxEditClub.

Figure 23.1. Changing the name of the connection to ZyxEditClub in the DPB

23.3. Create base connection eCBConn to ZyxClub
23.5. In the Processes Hierarchy box: Right-click on eCPConn.
23.6. Select Add Base Connection.
23.7. In response to Choose a domain object class: Double-click on ZyxClub. Note that the domain
process ZyxEditClub now has a connection to ZyxClub and that the connection is named newDefault-
BaseConnection.
23.8. Click on newDefaultBaseConnection in the Processes Hierarchy column.
23.9. In the Name/Value columns: In row Name: Change newDefaultBaseConnection to eCBConn
(edit Club Base Connection).

Figure 23.2. Changing the name of the connection to ZyxClub in the DPB

23.4. Add child process connection eMPChConn from ZyxEditClub to ZyxEditMember
23.10. In the Processes Hierarchy box: Click on eCPConn.
23.11. Right-click.
23.12. Select Add child connection.
23.13. In response to Choose a class: Double-click on ZyxEditMember. ZyxEditMember is added as a
child process with a connection named newChildProcessConnection.

Frameworks Getting Started
Tutorial

23. Create DP ZyxEditClub / modify DP ZyxEditMember 67

23.14. Click on newChildProcessConnection in the Processes Hierarchy column.
23.15. Change the name of connection newChildProcessConnection to eMPChConn (edit Member
Process Child Connection).

Figure 23.3. Adding a child process connection to ZyxEditMember in the DPB

23.16. Click anywhere in the DPB to register the changes.
23.17. Select Browser / Save all changes.
23.18. Close the DPB.

23.5. Create ZyxEditClub>>selectedMember, selectedMember:
23.19. Create the following method:
ZyxEditClub>>selectedMember
^self eCBConn currentMember

23.20. Create the following method:
ZyxEditClub>>selectedMember: aMember

self eCBConn currentMember: aMember

23.6. Create ZyxEditClub>>openOn:
23.21. Create the following method:
ZyxEditClub>>openOn: aClub

self eCBConn: aClub.
self openView.

23.22. Save the class.

23.7. Create ZyxEditMember>>edit
23.23. Create the following method:
ZyxEditMember>>edit

self openOn: self parent selectedMember.

<parent> returns the parent process (ZyxEditClub). <selectedMember> returns the member currently
selected in the list.
23.24. Save the class.
23.25. Save the image.

Frameworks Getting Started
Tutorial
24. Create ZyxEditClubView (View)68

24. Create ZyxEditClubView (View)
ZyxEditClubView will be the view for ZyxEditClub.
In this chapter you will:
• Create view ZyxEditClubView.
• Add a drop-down list that displays the club members and allows the selection of the currentMember.
• Create ZyxMember>>asListEntry. The asListEntry method must be implemented by a DO when

instances of the DO may be displayed in a view with a drop-down list. The object returned by the
method is the object that is displayed in the list (typically a string).

• Add a push button that is connected to ZyxEditMember>>edit.
• Add commitAndCloseView / abortAndCloseView buttons.
• In the DPB: Assign ZyxEditClubView to ZyxEditClub.
• Test.

24.1. Create AbtAppBldrView subclass ZyxEditClubView
24.1. In Visual Age Organizer: Create a new part for ZyxApplication with:
• Part class: Enter ZyxEditClubView.
• Part type: Select Visual Part.
• Inherits from: Select AbtAppBldrView.
24.2. Open the Composition Editor on ZyxEditClubView.
24.3. Double-click on the window. The properties dialog appears.
24.4. Change the partName to ZyxEditClub.
24.5. Click OK.

24.2. Add drop-down list to ZyxEditClubView
24.6. Add a drop-down list to the view.

Figure 24.1. Drop-down list in the parts palette

Figure 24.2. Drop-down list in ZyxEditClubView

24.7. Set drop-down list property partName to eCBConn_members_eCPConn_selectedMember_.

Figure 24.3. Naming convention settings for drop-down list

The above partName has the following meaning:
• The "_" (underline) characters separate name parts (this is not to be confused with the partName).
• eCBConn specifies the base connection to the ZyxClub object.
• members specifies the accessors (getter and setter) of the DO (ZyxClub) than reference the Collection

of references to the ZyxMember objects displayed in the drop-down list.
• eCPConn specifies the DP which implements the method specified in the fourth part of the name.
• selectedMember specifies the accessors (getter and setter) of the DO (ZyxMember) that is currently

selected in the drop-down list.
24.8. Select File / Save Part.

Frameworks Getting Started
Tutorial

24. Create ZyxEditClubView (View) 69

24.3. Create ZyxMember>>asListEntry
24.9. Create the following method:
ZyxMember>>asListEntry

^self name asString

24.4. Add push button with connection to ZyxEditMember>>edit
24.10. Add a Push Button.
24.11. Change the Push Button property object to edit.
24.12. Change the Push Button property partName to eMPChConn_edit_.

Figure 24.4. ZyxEditClubView with edit button

24.5. Add commitAndCloseView / abortAndCloseView buttons
24.13. Add a Push Button.
24.14. Change the Push Button property object to commitAndCloseView.
24.15. Change the Push Button property partName to commitAndCloseView_.
24.16. Add a Push Button.
24.17. Change the Push Button property object to abortAndCloseView.
24.18. Change the Push Button property partName to abortAndCloseView_.

Figure 24.5. ZyxEditClubView with commit and abort buttons

24.19. Save the part.
24.20. Close the CE.

24.6. Assign View to Process
24.21. Open the DPB on ZyxEditClub.
24.22. In the Processes Hierarchy box: Select process connection eCPConn.
24.23. In the Name/Value columns: In row Default View: Select from the drop-down list ZyxEditClub-
View.

Figure 24.6. Assigning ZxyEditClubView to ZyxEditClub in DPB

24.24. Save all changes.
24.25. Close the DPB.
24.26. Save the image.

24.7. Test
24.27. In the workspace execute the following code:
FW CH 24. Test ZyxEditClubView (and ZyxEditMemberView)."
[

Frameworks Getting Started
Tutorial
24. Create ZyxEditClubView (View)70

| club member1 member2 |
ZyxMember initializeValidation.
member1 := ZyxMember new.
member1 name: 'member1'.
member1 weight: 201.
member2 := ZyxMember new.
member2 name: 'member2'.
member2 weight: 202.
club := ZyxClub new.
club members add: member1.
club members add: member2.
ZyxEditClub new openOn: club.
ZyxEditClub new openOn: club.

]

2 views of the same club object are opened (if only 1 view is visible: move the view to uncover the other
view):

Figure 24.7. ZyxEditClubView dialogs

24.28. In the LEFT dialog: Select a member. Note that the member selection is also displayed in the
RIGHT dialog.

Figure 24.8. Selecting member from drop-down list selects member in other drop-down list

24.29. In the LEFT dialog: Click edit. A ZyxEditMember dialog is opened.
24.30. In the RIGHT dialog: Click edit. A second ZyxEditMember dialog is opened.

Figure 24.9. 2 ZyxEditClub dialogs each with its own ZyxEditMember child dialog

24.31. Change the name attribute in the LEFT ZyxEditMember dialog to member1new.

Frameworks Getting Started
Tutorial

24. Create ZyxEditClubView (View) 71

24.32. Click in a different field. Note that the new name is displayed in ALL dialogs:

Note that all changes are reflected in the dialogs regardless of which button (commit or abort) is pressed.
This is becuause no transaction handling has been defined for the processes. This will be explored in the
next chapter.
24.33. Click an abort button in a ZyxEditClubView dialog. Note that the corresponding ZyxEditMember dia-
log also closes, since the dialog is a child of the ZyxEditClubView dialog.
24.34. Close the remaining views.

Frameworks Getting Started
Tutorial
25. Transacted child process connection to ZyxEditMember72

25. Transacted child process connection to ZyxEditMember
In this chapter you will:
• In the DPB: Define the child process connection to ZyxEditMember as transacted. This will cause the

changes made in the child view (ZyxEditMemberView) will be transacted. However, there will still be no
transaction settings for the parent process ZyxEditClub.

• Test (the transacted changes in the child view will not be shown in the parent view since the parent pro-
cess is not transacted):
• Abort changes made in a child view.
• Commit changes made in a child view.

25.1. Define default transaction settings for child process connection to ZyxEditMem-
ber (eMPChConn)

25.1. In the DPB for ZyxEditClub: Define Transaction Connection Transaction Handling for eMPCh-
Conn with the following (default) options enabled:

• Autostart mode.
• Use own context.
• Transaction context.

Figure 25.1. Defining transaction settings for child connection to ZyxEditMember

25.2. Save all changes.
25.3. Close the DPB.
25.4. Save the image.

25.2. Test
25.5. In the workspace execute the following code:
FW CH 25. Test ZyxEditClubView (with transacted ZyxEditMember)."
[

| club member1 member2 |
ZyxMember initializeValidation.
member1 := ZyxMember new.
member1 name: 'member1'.
member1 weight: 201.
member2 := ZyxMember new.
member2 name: 'member2'.
member2 weight: 202.
club := ZyxClub new.
club members add: member1.
club members add: member2.
ZyxEditClub new openOn: club.
ZyxEditClub new openOn: club.

]

2 ZyxEditClubView dialogs appear.

25.2.1. Abort changes to member name in child view
25.6. From the drop-down list in the LEFT ZyxEditClub dialog: Select member1.
25.7. Click edit. The LEFT ZyxEditMemberView dialog appears.

Frameworks Getting Started
Tutorial

25. Transacted child process connection to ZyxEditMember 73

25.8. In the RIGHT ZyxEditClub dialog: Click edit. The RIGHT ZyxEditMemberView dialog appears.

Figure 25.2. 2 ZyxEditClub dialogs with ZyxEditMember child dialogs

25.9. Change name in the LEFT ZyxEditMember dialog to member1new.
25.10. Click anywhere to change the focus. Note that the ZyxEditClub dialogs are NOT updated with the
new name, since transaction handling is not defined for ZyxEditClub:

Figure 25.3. Transacted changes in child are not reflected in parent

25.11. Attempt to change the name in the RIGHT ZyxEditMember dialog. A transaction conflict exception
is thrown.
25.12. Close the debugger window.
25.13. Click abortAndBegin in LEFT ZyxEditMember dialog. Note that the changes are aborted in the
RIGHT ZyxEditMember dialog also.

Figure 25.4. Changes abort in LEFT child dialog are aborted in RIGHT child dialog also.

25.2.2. Commit changes to member name in child view
25.14. Change name in the LEFT ZyxEditMember dialog to member1new.

Frameworks Getting Started
Tutorial
25. Transacted child process connection to ZyxEditMember74

25.15. Click commitAndBegin. Note that the changes are show in all dialogs:

Figure 25.5. Committed changes in the child are immediately reflected in parent view

25.16. In the ZyxEditClub dialogs: Click commitAndCloseView to close the parent and child dialogs.

Frameworks Getting Started
Tutorial

26. Transacted parent process ZyxEditClub 75

26. Transacted parent process ZyxEditClub
In this chapter you will:
• In the DPB: Define the parent process ZyxEditClub as transacted (non-isolated). This will cause the

transacted changes made in the child view (ZyxEditMemberView) to be displayed in the parent view.
• Test.
Note: If the transactions for the parent process are specified as isolated, then the changes in the child will
not be shown in the parent until they are committed.

26.1. Define default transaction settings for parent process connection to ZyxEditClub
(eCPConn)

26.1. In the DPB: Define Transaction Main Transaction Handling for eCPConn with the following
(default) options enabled:

• Autostart mode.
• Use own context.
• Transaction context.

Figure 26.1. Defining transaction settings for ZyxEditClub in DPB

26.2. Save all changes.
26.3. Close the DPB.
26.4. Save the image.

26.2. Test
26.5. In the workspace execute the following code:
FW CH 26. Test transacted ZyxEditClub (& transacted ZyxEditMember)."
[

| club member1 member2 |
ZyxMember initializeValidation.
member1 := ZyxMember new.
member1 name: 'member1'.
member1 weight: 201.
member2 := ZyxMember new.
member2 name: 'member2'.
member2 weight: 202.
club := ZyxClub new.
club members add: member1.
club members add: member2.
ZyxEditClub new openOn: club.
ZyxEditClub new openOn: club.

]

2 ZyxEditClubView dialogs appear.

26.2.1. Display uncommitted changes in child view in parent view
26.6. From the drop-down list in the LEFT ZyxEditClub dialog: Select member1.
26.7. Click edit. The LEFT ZyxEditMemberView dialog appears.
26.8. In the RIGHT ZyxEditClub dialog: Click edit. The RIGHT ZyxEditMemberView dialog appears.
26.9. Change name in the LEFT ZyxEditMember dialog to member1new.
26.10. Click anywhere to change the focus. Note that the ZyxEditClubView’s are updated with the new

Frameworks Getting Started
Tutorial
26. Transacted parent process ZyxEditClub76

name, since transaction handling is not defined for ZyxEditClub:

Figure 26.2. Uncommitted changes in child are displayed in parent

26.11. Close the dialogs.

Frameworks Getting Started
Tutorial

27. Adding and deleting members 77

27. Adding and deleting members
In this chapter you will:
• Create ZyxEditClub methods for adding and deleting ZyxMember’s.
• Add push buttons to ZyxEditClubView with connections to the ZyxEditClub add and delete methods.
• Test.

27.1. Create ZyxEditClub>> addMember, deleteMember
27.1. Create the following method:
ZyxEditClub>>addMember

self eCBConn members add: (ZyxMember new name: ’new’).
self commitAndBegin.

27.2. Create the following method:
ZyxEditClub>>deleteMember

self eCBConn members remove: self eCBConn currentMember.
self commitAndBegin.

27.2. Add push buttons addMember / deleteMember to ZyxEditClubView
27.3. Add a Push Button to ZyxEditClubView.
27.4. Change the Push Button property object to addMember.
27.5. Change the Push Button property partName to addMember_.
27.6. Add a Push Button to ZyxEditClubView.
27.7. Change the Push Button property object to deleteMember.
27.8. Change the Push Button property partName to deleteMember_.

Figure 27.1. addMember and deleteMember buttons in ZyxEditClubView

27.9. Save all changes.
27.10. Save the image.

27.3. Test
27.11. In the workspace execute the following code:
FW CH 27. Add and delete ZyxMember’s to ZyxClub."
[

| club member1 member2 |
member1 := ZyxMember new

name: 'member1';
weight: 111.

club := ZyxClub new.
club members add: member1.
ZyxEditClub new openOn: club.

]

27.12. Use the addMember and deleteMember buttons to add and delete members.

Frameworks Getting Started
Tutorial
28. Implementing HoverHelp and F1 Help (using a ViewPort)78

28. Implementing HoverHelp and F1 Help (using a ViewPort)
Implementing Hover Help and F1 Help for a view requires that a ViewPort is created for the DO whose
attributes are displayed in the view. For detailed information about ViewPorts, see the Application Frame-
work User’s Guide chapter ‘1.3.11. Viewports’ (page 45).
Caution: Viewports can also be created for DP’s. Thus, the viewports ZyxMemberViewPort and ZyxEdit-
MemberViewPort could exist. Therefore, always pay special attention to ViewPort names.
In this chapter you will:
• Enable HoverHelp in ZyxEditMemberView.
• Create viewport ZyxMemberViewPort.
• Create ZyxMemberViewPort>>nameHoverHelpText. This method returns the String object to be dis-

played in the HoverHelp for attribute ZyxMember>>name. The method name consists of 2 parts:
• The partName for the part in the view (without the "_" character) that displays the attribute. The part-

Name is "name_"; therefore the first part of the method name must be "name".
• "HoverHelpText".

• Create ZyxMemberViewPort>>nameHelpText. This method returns the String object to be displayed in
the F1 Help for attribute ZyxMember>>name. The method name is similar to that for HoverHelp, exept
that the second part of the name is simply "HelpText".

• Assign ZyxMemberViewPort as the ViewPort for eMBConn (a Generic viewport is assigned to the
eMBConn by default).

• Test.

28.1. Enable HoverHelp in ZyxEditMemberView
28.1. In the Composition Editor for ZyxEditMemberView: Double-click on the ZyxEditMemberView

window. The Window properties dialog is opened.
28.2. Set hoverHelpEnabled to true.

Figure 28.1. Enabling Hover Help for a view

28.3. Click OK.
28.4. Close the CE.
28.5. Save the part.

28.2. Create MicFwViewPort subclass ZyxMemberViewPort
28.6. In Visual Age Organizer: Create and open (make sure the Open now checkbox is checked) a new
part for ZyxApplication with:
• Part class: ZyxMemberViewPort.
• Part type: Viewport.
• Inherits from: MicFwViewPort.

Figure 28.2. Settings for ZyxApplication part ZyxMemberViewPort

28.3. Create ZyxMemberViewPort>>nameHoverHelpText
28.7. Create the following method:

Frameworks Getting Started
Tutorial

28. Implementing HoverHelp and F1 Help (using a ViewPort) 79

ZyxMemberViewPort>>nameHoverHelpText
^’HoverHelp text for name’

28.4. Create ZyxMemberViewPort>>nameHelpText
28.8. Create the following method:
ZyxMemberViewPort>>nameHelpText

^’F1 help text for name’

28.9. Save the class.

28.5. Assign ZyxMemberViewPort as the ViewPort for eMBConn
28.10. In the DPB on ZyxEditClub: Select ZyxMemberViewPort as the ViewPort for eMBConn.

Figure 28.3. Assigning ZyxMemberViewPort as the ViewPort for the child connection to ZyxMember

28.11. Save all changes.
28.12. Close the DPB.
28.13. Save the image.

28.6. Test
28.14. In the workspace execute the following code:
FW CH 28. HoverHelp and F1 Help for ZyxMember."
[

| member1 |
member1 := ZyxMember new

name: 'member1';
weight: 111.

ZyxEditMember new openOn: member1.
]

The ZyxEditMember dialog appears.
28.15. Move the cursor into the name text field. The hover help text appears:

Figure 28.4. HoverHelp for name in ZyxEditMember dialog

28.16. Click on the name text field.
28.17. Press F1. An Information dialog appears:

Figure 28.5. F1 Help for name in ZyxEditMember dialog

28.18. Close the dialog.

Frameworks Getting Started
Tutorial
29. Enabling/disabling buttons80

29. Enabling/disabling buttons
Controls in a view can be enabled/disabled depending on the boolean value returned by a method for the
DP of the view.
In this chapter you will:
• Create ViewPort ZyxEditMemberViewPort.
• Create ZyxEditMemberViewPort>>editEnabled, which returns a boolean object to control whether or

not the button is enabled. The method name consists of 2 parts:
• The partName for the control in the view (without the "_" character). The partName is "edit_"; there-

fore the first part of the method name must be "edit".
• "Enabled".

• Assign ZyxEditMemberViewPort as the ViewPort for the connection eMPChConn.
• Test.

29.1. Create MicFwViewPort subclass ZyxEditMemberViewPort
29.1. In Visual Age Organizer: Create and open (make sure the Open now checkbox is checked) a new

part for ZyxApplication with:
• Part class: ZyxEditMemberViewPort.
• Part type: Viewport.
• Inherits from: MicFwViewPort.

29.2. Create ZyxEditMemberViewPort>>editEnabled
29.2. Create the following method:
ZyxEditMemberViewPort>>editEnabled
^(self model parent selectedMember notNil).

29.3. Assign ZyxEditMemberViewPort to eMPChConn
29.3. In the DPB on ZyxEditClub: Select ZyxEditMemberViewPort as the ViewPort for eMPChConn.
29.4. Save all changes.
29.5. Close the DPB.
29.6. Save the image.

29.4. Test
29.7. In the workspace execute the following code:
FW CH 29. Enable/disable edit button."
[

| club member1 |
member1 := ZyxMember new

name: 'member1';
weight: 111.

club := ZyxClub new.
club members add: member1.
ZyxEditClub new openOn: club.

]

29.8. The ZyxEditClubView dialog appears with no member selected. Note that the edit button is disab-
led:

Figure 29.1. ZyxEditClubView with disabled edit button

Frameworks Getting Started
Tutorial

29. Enabling/disabling buttons 81

29.9. Select member1. Note that the edit button is now enabled.

Figure 29.2. ZyxEditClubView with enabled edit button

29.10. Close the dialog.

Frameworks Getting Started
Tutorial
30. Using a ViewPort as a filter82

30. Using a ViewPort as a filter
Controls within a View can be changed. For example, a drop-down list that displays a single selected
object from a list of objects can be replaced with a list that displays multiple objects.
The problem is that the interface to one control may differ from the interface of another. For example:
• When an object is selected in a drop-down list, the drop-down list returns the object.
• When an object is selected in a List, the List returns a Collection that contains the selected object.
Thus, changing a control in a view could require changing the methods in the DP for the view. This is, how-
ever, a very undesireable solution.
This problem is solved by using a ViewPort as a filter. A ViewPort is created for the view with the new con-
trols. The Viewport will "intercept" and "translate" any messages between the ViewPort and the DP.
In this chapter you will:
• Create ZyxEditClubView2, which has a List instead of a drop-down list.
• Create ZyxEditClubViewPort2 (ZyxEditClubViewPort does not exist (the default ViewPort was used

previously)).
• Create ZyxEditClubViewPort2 filter accessors for selectedMember
• Specify ZyxEditClubView2/ZyxEditClubViewPort2 as the view/ViewPort for ZyxEditClub.
• Test.

30.1. Create ZyxEditClubView2 (with List instead of Drop-down list)
30.1.1. Copy ZyxEditClubView to ZyxEditClubView2

30.1. In the Visual Age Organizer: Right-click on ZyxEditClubView.
30.2. Select Copy.
30.3. In response to "New name for copy of class?": Enter ZyxEditClubView2.
30.4. Click OK.
30.5. In response to "Do you wish to browse methods that reference the class(es) to be copied?":
Click No (do not browse classes).

30.1.2. In ZyxEditClubView2: Delete Drop-down list and add a List
30.6. In the Composition Editor for ZyxEditClubView2: Delete drop-down list.
30.7. Add a List to the view.

Figure 30.1. The List part in the parts palette

Figure 30.2. ZyxEditClubView2 with List

30.8. Change the List partName to eCBConn_members_eCPConn_selectedMember_name_.
30.9. Save the part.
30.10. Close the CE.

30.2. Create MicFwViewPort subclass ZyxEditClubViewPort2
30.11. In Visual Age Organizer: Create and open (make sure the Open now checkbox is checked) a new
part for ZyxApplication with:
• Part class: ZyxEditClubViewPort2.
• Part type: Viewport.

Frameworks Getting Started
Tutorial

30. Using a ViewPort as a filter 83

• Inherits from: MicFwViewPort.

30.3. Create ZyxEditClubViewPort2 filter accessors for selectedMember
30.12. Create the following method:
ZyxEditClubViewPort2>>selectedMember

^OrderedCollection with: self model selectedMember.

30.13. Create the following method:
ZyxEditClubViewPort2>>selectedMember: aCollection

aCollection notEmpty
ifTrue: [self model selectedMember: aCollection first].

30.14. Save the class.

30.4. Specify ZyxEditClubView2/ZyxEditClubViewPort2 as the view/ViewPort for
ZyxEditClub connection eCPConn

30.15. In the DPB on ZyxEditClub: Change the eCPConn Default view from ZyxEditClubView to
ZyxEditClubView2.
30.16. Set the eCPConn ViewPort to ZyxEditClubViewPort2.

Figure 30.3. Assign ZyxEditClubView2/ZyxEditClubViewPort2 to ZyxEditClub in the DPB

30.17. Save all changes.
30.18. Close the DPB.
30.19. Save the image.

30.5. Test
30.20. In the workspace execute the following code:
FW CH 30. ViewPort as a filter(ZyxEditClubView drop-down list replaced with
list)."
[

| club member1 member2 |
member1 := ZyxMember new

name: 'member1';
weight: 111.

member2 := ZyxMember new
name: 'member2';
weight: 222.

club := ZyxClub new.
club members add: member1.
club members add: member2.
ZyxEditClub new openOn: club.

]

30.21. In the workspace: Select the code from the previous example and execute with Execute. The
ZyxEditClubView dialog appears with the new List.

Figure 30.4. ZyxEditClubView with List (instead of drop-down list)

Frameworks Getting Started
Tutorial
30. Using a ViewPort as a filter84

30.22. Test the dialogs as in the previous chapters.

Frameworks Getting Started
Tutorial

31. Displaying / hiding a GroupControl 85

31. Displaying / hiding a GroupControl
Controls can be displayed / hidden. The implementation of this functionality is similar to that for enabling /
disabling controls (as with the push buttons earlier).
In this chapter you will:
• Add a GroupBox to the ZyxEditMemberView whose contents are only displayed if the weight of the

selected member meets certain criteria ("notExcessive", in this case < 100). The GroupBox partName
consists of 2 parts:
• The child connection (eMPChConn_) to the process (ZyxEditMember).
• personalInfo_.

• Add a label and text field for ZyxMember>>weight to the GroupBox (the original weight label and field
are not deleted from ZyxEditMemberView (otherwise you would not be able to change the weight)).

• Create ZyxEditMemberViewPort>>personalInfoVisible, which returns a boolean value that deter-
mines whether or not the GroupBox should be displayed.

• Specify ZyxEditMemberViewPort as the ViewPort for ZyxEditMember connection eMPConn. This is
required since ZyxEditMemberViewPort is only assigned to connection eMPChConn, and in the test
examples you will be opening ZyxEditMemberView directly (not from the ZyxEditClub process).

• Creating ZyxMember>>weightNotExcessive, which determines whether the weight meets the criteria
for being displayed.

• Test

31.1. Add GroupBox to ZyxEditMemberView
31.1. In the Composition Editor for ZyxEditMemberView: Add a GroupBox.

Figure 31.1. Group Box in the parts palette

31.2. Double-click on the GroupBox to open the properties list.
31.3. Change label to Personal info.
31.4. Change partName to personalInfo_ (do not forget the trailing underscore character).
31.5. Click OK.

Figure 31.2. ZyxEditMemberView with Personal info group box

31.2. Add label and text field for ZyxMember>>weight to GroupBox
31.6. Add a Label to the GroupBox.
31.7. Change the Label property object to Weight.
31.8. Add a Text field to the GroupBox.
31.9. Change the Text field property partName to PI_weight_ (Note: The prefix "PI_" is added because
the partName must be unique (the part weight_ already exists on the view)):

Figure 31.3. ZyxMember>>weight in the Personal info group box

31.10. Save the part.

Frameworks Getting Started
Tutorial
31. Displaying / hiding a GroupControl86

31.11. Close the CE.

31.3. Create ZyxEditMemberViewPort>>personalInfoVisible
31.12. Create the following method:
ZyxEditMemberViewPort>>personalInfoVisible

^self model weightNotExcessive.

31.13. Save the class.

31.4. Specify ZyxEditMemberViewPort as the ViewPort for ZyxEditMember connection
eMPConn (not eMPChConn)

31.14. In the DPB on ZyxEditClub: In the column Process Classes Hierarchy: Select ZyxEditMember.
31.15. Set the eMPConn ViewPort to ZyxEditMemberViewPort.

Figure 31.4. Assign ZyxEditMemberViewPort to ZyxEditMember connection eMPConn in the DPB

31.16. Save all changes.
31.17. Close the DPB.

31.5. Create ZyxEditMember>>weightNotExcessive
31.18. Create the following method:
ZyxEditMember>>weightNotExcessive

self eMBConn weight isNil ifTrue: [^true].
^self eMBConn weight < 100 .

31.19. Save the class.
31.20. Save the image.

31.6. Test
31.21. In the workspace execute the following code:
FW CH 31. Displaying / hiding a Group Control (GroupBox)."
[

| member1 |
ZyxMember initializeValidation.
member1 := ZyxMember new

name: 'member1';
weight: 111.

ZyxEditMember new openOn: member1.
]

Note that the weight is 111; therfore, the GroupBox is not displayed.

Figure 31.5. ZyxMemberView Personal info GroupBox not displayed if weight excessive

31.22. Change the weight to 99.

Frameworks Getting Started
Tutorial

31. Displaying / hiding a GroupControl 87

31.23. Click to change the focus. Note that the GroupBox is displayed.

Figure 31.6. ZyxMemberView Personal info GroupBox displayed if weight not excessive

31.24. Click abortAndBegin. Note that the GroupBox is not displayed.
31.25. Close the dialog.

Frameworks Getting Started
Tutorial
32. Static ZyxEditClubView GroupBox containing ZyxEditMember as child pro-88

32. Static ZyxEditClubView GroupBox containing ZyxEditMember
as child process

A GroupControl can be a quasi-view in that it can contain a child process.
In this chapter you will:
• Copy the GroupBox from ZyxEditMemberView to ZyxEditClubView2. The label "Weight" in the Group-

Box will be renamed "Initial weight".
• Add commitAndBegin and abortAndBegin buttons to the GroupBox.
• Modify ZyxEditClub>>selectedMember: so that the eMBConn for the eMPChConn is set.
• Create ZyxEditClubViewPort2>>personalInfoVisible so that the GroupBox is only visible if a member

has been selected from the list.
• Modify ZyxMember>>initializeValidation so that a valid value for ZyxMember>>weight is -1.
• Create ZyxEditClubViewPort2>>personalInfoEnabled that enables the GroupBox in ZyxEditClubView

only if ZyxMember>>weight == -1. Thus the weight in ZyxEditClubView can only be modified if the
weight == -1.

• Test.

32.1. Copy GroupBox from ZyxEditMemberView to ZyxEditClubView2
32.1. In the Composition Editor on ZyxEditMemberView: Select the Personal info groupbox.
32.2. Press Ctrl-Ins.
32.3. Close the CE.
32.4. Open the Composition Editor on ZyxEditClubView2.
32.5. Press Shift-Ins. The cursor turns into a cross-hair.
32.6. Click on ZyxEditClubView2 window to add the group box.

Figure 32.1. ZyxEditClubView with static GroupBox for ZyxEditMember

32.7. Change the Personal info GroupBox property partName to
eCPConn_personalInfo_eMBConn_eMPChConn_.
32.8. Change the label Weight to Initial weight.

32.2. Add commitAndBegin and abortAndBegin buttons to GroupBox
32.9. Add a Push Button to GroupBox.
32.10. Change Push Button property object to commitAndBegin.
32.11. Change Push Button property partName to commitAndBegin_.
32.12. Add a Push Button to GroupBox.
32.13. Change Push Button property object to abortAndBegin.
32.14. Change Push Button property partName to abortAndBegin_.

Figure 32.2. ZyxEditClub static GroupBox for ZyxEditMember with commit/abort buttons

32.15. Save the part.
32.16. Closet the CE.

Frameworks Getting Started
Tutorial

32. Static ZyxEditClubView GroupBox containing ZyxEditMember as child pro- 89

32.3. Modify ZyxEditClub>>selectedMember:
32.17. Modify the method as shown below:
ZyxEditClub>>selectedMember: aMember

self eCBConn currentMember: aMember.
self eMPChConn eMBConn: aMember. "added line"

32.18. Save the class.

32.4. Create ZyxEditClubViewPort2>>personalInfoVisible
32.19. Create the following method:
ZyxEditClub>>personalInfoVisible

^self model selectedMember notNil.

32.5. Modify ZyxMember>>initializeValidation
32.20. Create the following method:
initializeValidation

self validateWrite: #weight
using: [:value | ((value notNil and: [value > 20])
and: [value < 500]) or: [value == -1]]

32.21. Save the class.

32.6. Create ZyxEditClubViewPort2>>personalInfoEnabled
32.22. Create the following method:
ZyxEditClub>>personalInfoEnabled

^self model selectedMember weight == -1.

32.23. Save the class.
32.24. Save the image.

32.7. Test
32.25. In the workspace: Execute the following code:
FW CH 32. ZyxEditClubView static groupbox containing ZyxEditMember as child
process."
[

| club member1 member2 |
ZyxMember initializeValidation.
member1 := ZyxMember new

name: 'member1';
weight: -1.

member2 := ZyxMember new
name: 'member2';
weight: -1.

club := ZyxClub new.
club members add: member1.
club members add: member2.
ZyxEditClub new openOn: club.

]

The following dialog appears (the GroupBox is hidden because no member has been selected):

Figure 32.3. ZyxEditClub dialog with hidden ZyxEditMember GroupBox

Frameworks Getting Started
Tutorial
32. Static ZyxEditClubView GroupBox containing ZyxEditMember as child pro-90

32.26. Select member1. Note that the GroupBox Personal info is enabled:

Figure 32.4. ZyxEditClub dialog after ZyxMember selected from list

32.27. Change the weight to 50.
32.28. Click commitAndBegin. Note that the group box is displayed but disabled:

Figure 32.5. ZyxEditClub dialog with disabled ZyxEditMember groupbox

32.29. Click on edit. The ZyxEditMember dialog is opened.
32.30. In the ZyxEditMember dialog: Change weight to 51. Note that the change is also displayed in the
disabled ZyxEditClub groupbox:

Figure 32.6. ZyxEditClub / ZyxEditMember dialogs

32.31. Close the dialogs.

Frameworks Getting Started
Tutorial

33. Static ZyxEditClubView Notebook containing ZyxEditMember as child pro- 91

33. Static ZyxEditClubView Notebook containing ZyxEditMember
as child process

There are several types of GroupControls, including GroupBoxes and Notebooks. In this chapter you will
add a notebook to ZyxEditClubView whose functions are analogous to those of the GroupBox in the previ-
ous chapter.
In this chapter you will:
• Add a Notebook to ZyxEditClubView2.
• Add a Notebook Page to the Notebook.
• Add a label and text field to the Notebook page for weight.
• Add commitAndBegin / abortAndBegin buttons to the Notebook page.
• Test.

33.1. Add Notebook to ZyxEditClubView2
33.1. Add a PM Notebook to ZyxEditClubView2.

Figure 33.1. PM Notebook in the parts palette

Figure 33.2. ZyxEditClubView with PM Notebook

33.2. Change the Notebook property partName to eCPConn_personalInfo_.

33.2. Add Notebook page to Notebook
33.3. Add a Notebook page to the Notebook.

Figure 33.3. Notebook page in the parts palette

33.4. Change the Notebook page property partName to X_X_X_eMPChConn_.
33.5. Change the Notebook page property tabLabel to Weight (in the Notebook properties dialog click
on the button on the tabLabel drop-down list to open the Tab label dialog, where you can enter the text
Weight).

Figure 33.4. ZyxEditClubView Notebook with page Weight

33.3. Add <weight> label and text field to Notebook page
33.6. Add a Label to the Notebook page.
33.7. Change Label property object to Initial weight.

Frameworks Getting Started
Tutorial
33. Static ZyxEditClubView Notebook containing ZyxEditMember as child pro-92

33.8. Add a Text Field to the Notebook page.
33.9. Change Text Field property partName to Y_weight_ ("Y" for a unique partName).

33.4. Add commitAndBegin and abortAndBegin buttons to Notebook page
33.10. Add a Button to GroupBox.
33.11. Change Button property object to commitAndBegin.
33.12. Change Button property partName to Y_commitAndBegin_ ("Y" for a unique partName).
33.13. Add a Button to GroupBox.
33.14. Change Button property object to abortAndBegin.
33.15. Change Button property partName to Y_abortAndBegin_ ("Y" for a unique partName).

Figure 33.5. ZyxEditClubView with finished notebook page

33.16. Save the part.
33.17. Close the CE.
33.18. Save the image.

33.5. Test
33.19. In the workspace: Execute the following code:
FW CH 33. ZyxEditClubView static PM Notebook containing ZyxEditMember as child
process."
[

| club member1 member2 |
ZyxMember initializeValidation.
member1 := ZyxMember new

name: 'member1';
weight: -1.

member2 := ZyxMember new
name: 'member2';
weight: -1.

club := ZyxClub new.
club members add: member1.
club members add: member2.
ZyxEditClub new openOn: club.

]

The following dialog appears:

Figure 33.6. ZyxEditClub dialog with hidden GroupBox and PM notebook

Frameworks Getting Started
Tutorial

33. Static ZyxEditClubView Notebook containing ZyxEditMember as child pro- 93

33.20. Select member1. Note that the the GroupBox Personal info and the Notebook are visible:

Figure 33.7. ZyxEditClub dialog with visible GroupBox and PM Notebook

33.21. Test the Notebook as you tested the GroupBox in the previous chapter. Note that the notebook
page functions exactly as the groupbox, and that any changes in the notebook are reflected in the Group-
Box (and vice versa).

Frameworks Getting Started
Tutorial
34. Authorization: DO attribute accessors94

34. Authorization: DO attribute accessors
Authorization refers to the ability to enable or disable the reading / writing of a DO attribute using methods
of the following format:
• DO>>authorizeRead #variable using: [(expression that evaluates to boolean)].
• DO>>authorizeWrite #variable using: [(expression that evaluates to boolean)].
For detailed information about Authorization of DO attribute accessors, see the Application Framework
User’s Guide chapter ‘4.6. Authorization’ (page 195).
In this chapter you will:
• Create MicFwDomainObject subclass ZyxUser. ZyxUser will be the object that is authorized to read /

write attributes.
• Create ZyxUser class>>current. This method returns a reference to the single instance of ZyxUser.
• In the ONB: Add variables ZyxUser>>authorizeReadWeight, authorizeWriteWeight. These variables

store the authorization condition for the ZyxUser instance.
• Add authorizeReadWeight / authorizeWriteWeight toggle buttons to ZyxEditClubView2. These buttons

can be used to easily change the authorization for the user.
• Create ZyxClub>>authorizeReadWeight / authorizeWriteWeight accessors. These methods store the

input from the buttons to the ZyxUser.
• Create ZyxMember class>>initializeAuthorization. This is the method that initializes authorization for

ZyxMember attributes.
• Modify ZyxEditClubViewPort2>>personalInfoEnabled so that the GroupBoxes in ZyxEditClubView are

always enabled.
• Test.

34.1. Create MicFwDomainObject subclass ZyxUser
34.1. In Visual Age Organizer: Create and open (make sure the Open now checkbox is checked) a new

part for ZyxApplication with:
• Part class: ZyxUser.
• Part type: Domain object class.
• Inherits from: MicFwDomainObject.

34.2. Create ZyxUser class>>current
34.2. Add ZyxUser class variable Current.
MicFwDomainObject subclass: #ZyxUser

instanceVariableNames: ''
classVariableNames: 'Current'
poolDictionaries: ''

34.3. Create the following method:
ZyxUser class>>current

Current isNil ifTrue: [Current := self new initialize].
^Current.

34.4. Save the class.

34.3. Add variables ZyxUser>>authorizeReadWeight, authorizeWriteWeight (in ONB)
34.5. In the ONB on ZyxUser: Add ZyxUser>>authorizeReadWeight (no typing).
34.6. In the ONB on ZyxUser: Add ZyxUser>>authorizeWriteWeight (no typing).
34.7. Save the class.
34.8. Close the ONB.

34.4. Add authorizeReadWeight, authorizeWriteWeight toggle buttons to
ZyxEditClubView2

34.9. In the Composition Editor on ZyxEditClubView2: Add a Toggle button to ZyxEditClubView.

Frameworks Getting Started
Tutorial

34. Authorization: DO attribute accessors 95

Figure 34.1. Toggle button (checkbox) in the parts palette

34.10. Change the toggle button property object to authorizeReadWeight.
34.11. Change the toggle button property partName to authorizeReadWeight_.
34.12. Add Toggle button to ZyxEditClubView.
34.13. Change the toggle button property object to authorizeWriteWeight.
34.14. Change the toggle button property partName to authorizeWriteWeight_.

Figure 34.2. ZyxEditClubView2 with the authorizeReadWeight, authorizeWriteWeight toggle buttons

34.15. Save the part.
34.16. Close the CE.

34.5. Create ZyxClub>>authorizeReadWeight, authorizeWriteWeight accessors
34.17. Create the following method:
ZyxClub>>authorizeReadWeight

^ZyxUser current authorizeReadWeight

34.18. Create the following method:
ZyxClub>>authorizeReadWeight: aBoolean

ZyxUser current authorizeReadWeight: aBoolean.

34.19. Create the following method:
ZyxClub>>authorizeWriteWeight

^ZyxUser current authorizeWriteWeight

34.20. Create the following method:
ZyxClub>>authorizeWriteWeight: aBoolean

ZyxUser current authorizeWriteWeight: aBoolean.

34.21. Save the class.

34.6. Create ZyxMember class>>initializeAuthorization
34.22. Create the following method:
ZyxMember class>>initializeAuthorization

ZyxUser current authorizeReadWeight
ifNil: [ZyxUser current authorizeReadWeight: true].

self authorizeRead: #weight
using: [ZyxUser current authorizeReadWeight].

ZyxUser current authorizeWriteWeight
ifNil: [ZyxUser current authorizeWriteWeight: true].

self authorizeWrite: #weight
using: [ZyxUser current authorizeWriteWeight].

34.23. Save the class.

34.7. Modify ZyxEditClubViewPort2>>personalInfoEnabled
34.24. Modify the following method:
ZyxEditClub>>personalInfoEnabled

^true.

34.25. Save the class.
34.26. Save the image.

34.8. Test

Frameworks Getting Started
Tutorial
34. Authorization: DO attribute accessors96

34.27. In the workspace: Execute the following code (note that a line has been added to initializeAuthori-
zation for ZyxMember attributes):
FW CH 34. ZyxMember>>weight read and write authorization."
[

| club member1 member2 |
ZyxMember initializeValidation.
ZyxMember initializeAuthorization. "added line"
member1 := ZyxMember new

name: 'member1';
weight: 111.

member2 := ZyxMember new
name: 'member2';
weight: 222.

club := ZyxClub new.
club members add: member1.
club members add: member2.
ZyxEditClub new openOn: club.

]

The following dialog opens:

Figure 34.3. ZyxEditClub dialog with authorizeReadWeight / authorizeWriteWeight toggle buttons

34.28. Select member1. The weight attribute for member1 is displayed.

Figure 34.4. ZyxEditClub dialog after member selected

34.29. Uncheck the toggle button authorizeReadWeight. Note that a value of 0 is displayed for the
weight:

Figure 34.5. ZyxEditClub dialog after reading of ZyxMember attribute weight unauthorized

34.30. Uncheck the toggle button authorizeWriteWeight. Note that the entry fields for write are disabled:

Frameworks Getting Started
Tutorial

34. Authorization: DO attribute accessors 97

Figure 34.6. ZyxEditClub dialog after writing of ZyxMember attribute weight unauthorized

34.31. Close the dialog.

Frameworks Getting Started
Tutorial
35. Authorization: DP methods98

35. Authorization: DP methods
Authorization refers to the ability to enable or disable the execution of DP method using methods of the
following format:
• DP>>authorizePerform #method using: [(expression that evaluates to boolean)].
For detailed information about Authorization of DP methods, see the Application Framework User’s
Guide chapter ‘4.6. Authorization’ (page 195).
In this chapter you will:
• In the ONB: Add variable ZyxUser>>authorizeDeleteMember. This variable stores the authorization for

ZyxEditClub>>deleteMember for the ZyxUser instance.
• Add authorizeDeleteMember toggle button to ZyxEditClubView2. This button can be used to easily

change the authorization for the user.
• Create ZyxClub>>authorizeDeleteMember accessors. These methods store the input from the check-

box to the ZyxUser.
• Create ZyxEditClub class>>initializeAuthorization. This is the method that initializes authorization for

ZyxEditClub DP’s.
• Test.

35.1. Add variable ZyxUser>>authorizeDeleteMember (in ONB)
35.1. In the ONB: Add ZyxUser>>authorizeDeleteMember (not typed).
35.2. Save the class.
35.3. Close the ONB.

35.2. Add authorizeDeleteMember toggle button to ZyxEditClubView2
35.4. In the Composition Editor on ZyxEditClubView2: Add a Toggle button to ZyxEditClubView.
35.5. Change the toggle button property object to authorizeDeleteMember.
35.6. Change the toggle button property partName to authorizeDeleteMember_.

Figure 35.1. authorizeDeleteMember toggle button in ZyxEditClubView2

35.7. Save the part.
35.8. Close the CE.

35.3. Create ZyxClub>>authorizeDeleteMember accessors
35.9. Create the following method:
ZyxClub>>authorizeDeleteMember

^ZyxUser current authorizeDeleteMember

35.10. Create the following method:
ZyxClub>>authorizeDeleteMember: aBoolean

ZyxUser current authorizeDeleteMember: aBoolean.

35.4. Create ZyxEditClub class>>initializeAuthorization
35.11. Create the following method (note the code in bold):
ZyxEditClub class>>initializeAuthorization

ZyxUser current authorizeDeleteMember
ifNil: [ZyxUser current authorizeDeleteMember: true].

self authorizePerform: #deleteMember
using: [ZyxUser current authorizeDeleteMember].

35.12. Save the class.
35.13. Save the image.

35.5. Test
35.14. In the workspace: Execute the following code (note that a line has been added to initializeAuthori-

Frameworks Getting Started
Tutorial

35. Authorization: DP methods 99

zation for ZyxEditClub methods):
FW CH 35. ZyxEditMember>>deleteMember authorization."
[

| club member1 member2 |
ZyxMember initializeValidation.
ZyxMember initializeAuthorization.
ZyxEditClub initializeAuthorization. "added line"
member1 := ZyxMember new

name: 'member1';
weight: 111.

member2 := ZyxMember new
name: 'member2';
weight: 222.

club := ZyxClub new.
club members add: member1.
club members add: member2.
ZyxEditClub new openOn: club.

]

The following dialog opens:

Figure 35.2. ZyxEditClub dialog with authorizeDeleteMember toggle button

35.15. Uncheck the toggle button authorizeDeleteMember. Note that the deleteMember button disap-
pears:

Figure 35.3. ZyxEditClub dialog after ZyxEditClub method deleteMember unauthorized

35.16. Close the dialog.

Frameworks Getting Started
Tutorial
36. Modality: MicFwPrimaryApplicationModal100

36. Modality: MicFwPrimaryApplicationModal
Setting the modality of a process to MicFwPrimaryApplicationModal disables the controls of the parent
dialog when the process view is opened as a child dialog.
In this chapter you will:
• Create ZyxEditMember class>>modality. This method sets the modality for ZyxEditMember to MicF-

wPrimaryApplicationModal. Thus, if a ZyxEditMember dialog is opened by pressing the edit key in a
ZyxEditClub dialog, then the ZyxEditClub dialog is disabled.

• Test.

36.1. Create ZyxEditMember class>>modality
36.1. Create the following method:
ZyxEditMember class>>modality

^#MicFwPrimaryApplicationModal

36.2. Save the class.
36.3. Save the image.

36.2. Test
36.4. In the workspace: Execute the following code:
FW CH 36. ZyxEditMember modality = MicFwPrimaryApplicationModal."
[

| club member1 |
member1 := ZyxMember new

name: 'member1';
weight: 99.

club := ZyxClub new.
club members add: member1.
ZyxEditClub new openOn: club.
ZyxEditClub new openOn: club.

]

The following 2 ZyxEditClub dialogs appear (the dialogs have been resized in the diagram below):

Figure 36.1. 2 ZyxEditClub dialogs

2 ZyxEditClub dialogs appear.
36.5. Check all authorization checkboxes.
36.6. In the RIGHT ZyxEditClub dialog: Select member1.

Frameworks Getting Started
Tutorial

36. Modality: MicFwPrimaryApplicationModal 101

36.7. In the LEFT ZyxEditClub dialog: Click on edit. The LEFT ZyxEditMember dialog is opened.:

Figure 36.2. 2 ZyxEditClub and LEFT ZyxEditMember dialogs

36.8. Attempt to use a control in the LEFT ZyxEditClub dialog. The controls are NOT enabled because
the dialog has a subdialog.
36.9. In the RIGHT ZyxEditClub dialog: Change the weight to 88. Note that the controls ARE enabled
because the dialog has NO subdialog.
36.10. Click in another dialog to change the focus. Note that the new weight is shown in the other dialogs:

Figure 36.3. Changes in RIGHT ZyxEditClub dialog are reflected in all dialogs

36.11. Note that other VAST dialogs (not the dialogs or subdialogs generated from the workspace code)
and the dialogs of non-VAST applications are available.
36.12. Close the dialogs.

Frameworks Getting Started
Tutorial
37. Modality: MicFwFullApplicationModal102

37. Modality: MicFwFullApplicationModal
Setting the modality of a process to MicFwFullApplicationModal disables the controls in all other appli-
cation dialogs when the process view is opened.
In this chapter you will:
• Modify ZyxEditMember class>>modality. This method sets the modality for ZyxEditMember to MicFw-

FullApplicationModal. Thus, if a ZyxEditMember dialog is opened, then all other application dialogs are
disabled.

• Test.

37.1. Modify ZyxEditMember class>>modality
37.1. Edit the method as shown:
ZyxEditMember class>>modality

^#MicFwFullApplicationModal

37.2. Save the class.
37.3. Save the image.

37.2. Test
37.4. In the workspace: Execute the following code:
FW CH 37. ZyxEditMember modality = MicFwFullApplicationModal."
[

| club member1 |
member1 := ZyxMember new

name: 'member1';
weight: 99.

club := ZyxClub new.
club members add: member1.
ZyxEditClub new openOn: club.
ZyxEditClub new openOn: club.

]

2 ZyxEditClub dialogs appear.
37.5. Check all authorization checkboxes.
37.6. In the RIGHT ZyxEditClub dialog: Select member1.
37.7. In the LEFT ZyxEditClub dialog: Click on edit. The LEFT ZyxEditMember dialog is opened.
37.8. Attempt to use a control in the LEFT ZyxEditClub dialog. The controls are NOT enabled because
the dialog has a subdialog.
37.9. In the RIGHT ZyxEditClub dialog: The controls are NOT enabled because the other ZyxEditClub
dialog has a subdialog.
37.10. Note that other VAST dialogs (not the dialogs or subdialogs generated from the workspace code)
and the dialogs of non-VAST applications are available.
37.11. Close the dialogs.

Frameworks Getting Started
Tutorial

38. Modality: MicFwSystemModal 103

38. Modality: MicFwSystemModal
Setting the modality of a process to MicFwSystemModal disables the controls in all other VAST dialogs
when the process view is opened.
In this chapter you will:
• Modify ZyxEditMember class>>modality. This method sets the modality for ZyxEditMember to MicFw-

SystemModal. Thus, if a ZyxEditMember dialog is opened, then all other VAST dialogs are disabled.
• Test.

38.1. Edit ZyxEditMember class>>modality
38.1. Edit the method as shown:
ZyxEditMember class>>modality

^#MicFwSystemModal

38.2. Save the class.
38.3. Save the image.

38.2. Test
38.4. In the workspace: Execute the following code:
FW CH 38. ZyxEditMember modality = MicFwSystemModal."
[

| club member1 |
member1 := ZyxMember new

name: 'member1';
weight: 99.

club := ZyxClub new.
club members add: member1.
ZyxEditClub new openOn: club.

]

1 ZyxEditClub dialog appears.
38.5. In ZyxEditClub dialog: Select member1.
38.6. Click on edit. The ZyxEditMember dialog is opened.
38.7. Note that all other VAST dialogs (the System Transcript, Visual Age Organizer, etc.) are NOT
available.
38.8. Close the ZyxEditMember dialog. Note that all controls in all dialogs are again available.
38.9. Close the ZyxEditClub dialog.

Frameworks Getting Started
Tutorial
39. Dynamic GroupBox104

39. Dynamic GroupBox
The contents of a GroupBox can be dynamic, which means that the content of the GroupBox can change
dynamically during program execution.
In this chapter you will:
• Disable modality (from the previous chapter).
• Create ZyxMember subclasses ZyxStudent, ZyxTeacher. In order to simplify the implementation, it is

assumed that Teachers and Students are all Club Members. The terms Teacher and Student are used
rather than Trainer and Trainee because they are more easily distinguished.

• Modify the ZyxEditClubView2 GroupBox:
• Change the name. The name will be part of the name of the methods for implementing the dynamic

nature of the GroupBox.
• Delete the parts inside the GroupBox. The only contents of the GroupBox will be the selected form.

• Create ZyxEditClubViewPort2>>memberFormLabel. <aspectName>Label is the method that returns
the String object that will be used as the label for the dynamic group box.

• Create ZyxEditClubViewPort2>>memberForm. memberForm returns a MicFwMetaControlList with a
MicFwMetaPart. The MicFwMetaPart contains an accessor string and part class name for the form that
in the dynamic group box. The type of form returned depends on whether or not the selected member is
a ZyxStudent or ZyxTeacher.

• Create ZyxStudentForm. ZyxStudentForm is the form in the dynamic group box when a ZyxStudent is
selected.

• Create ZyxTeacherForm. ZyxTeacherForm is the form in the dynamic group box when a ZyxTeacher is
selected.

• Test.

39.1. Disable modality (edit ZyxEditMember class>>modality)
39.1. Edit the method as shown to disable modality (for the same result: delete the method):
ZyxEditMember class>>modality

^#MicFwNoModality

39.2. Save the class.

39.2. Create ZyxMember subclasses ZyxStudent, ZyxTeacher
39.3. In Visual Age Organizer: Create a new part for ZyxApplication with:
• Part class: ZyxStudent.
• Part type: Domain object class.
• Inherits from: ZyxMember.
39.4. In Visual Age Organizer: Create a new part for ZyxApplication with:
• Part class: ZyxTeacher.
• Part type: Domain object class.
• Inherits from: ZyxMember.

39.3. Modify GroupBox in ZyxEditClubView2
39.5. In ZyxEditClubView2: Change GroupBox partName to X_memberForm_.
39.6. Delete the parts inside the GroupBox (text label, text field, 2 push buttons).

Figure 39.1. Dynamic group box in ZyxEditClubView2

39.7. Save the part.

39.4. Create ZyxEditClubViewPort2>>memberFormLabel
<aspectName>Label is the method that returns the String object that will be used as the label for the

dynamic group box.

Frameworks Getting Started
Tutorial

39. Dynamic GroupBox 105

39.8. Create the following method:
ZyxEditClubViewPort2>>memberFormLabel

self model selectedMember isNil
ifTrue: [^'Selected is not teacher nor student'].

(self model selectedMember isKindOf: ZyxStudent)
ifTrue: [^'Student info'].

(self model selectedMember isKindOf: ZyxTeacher)
ifTrue: [^'Teacher info'].

39.5. Create ZyxEditClubViewPort2>>memberForm
memberForm returns a MicFwMetaControlList with a MicFwMetaPart. The MicFwMetaPart contains an
accessor string and part class name for the form that in the dynamic group box.
39.9. Create the following method:
ZyxEditClubViewPort2>>memberForm

| mpc |
mpc := self newMetaControlListForAspect: #memberForm.
self model selectedMember isNil ifTrue: [^mpc].
(self model selectedMember isKindOf: ZyxTeacher) ifTrue:

[mpc add: (MicFwMetaPart new
accessorString: 'VOID VOID VOID eMPChConn'
partClassName: #ZyxTeacherForm)].

(self model selectedMember isKindOf: ZyxStudent) ifTrue:
[mpc add: (MicFwMetaPart new

accessorString: 'VOID VOID VOID eMPChConn'
partClassName: #ZyxStudentForm)].

^mpc.

39.6. Create ZyxStudentForm
39.10. Create Visual Part ZyxStudentForm (open now).
39.11. Delete the window.
39.12. Add a Form.

Figure 39.2. Form part in the parts palette

39.13. Add a label with property object as Student weight.
39.14. Add a Text field with property partName as weight_.
39.15. Add a button with object CommitAndBegin and partName commitAndBegin_.
39.16. Add a button with object AbortAndBegin and partName abortAndBegin_.

Figure 39.3. ZyxStudentForm

39.17. Save the part.

39.7. Create ZyxTeacherForm
39.18. Copy Visual Part ZyxStudentForm to ZyxTeacherForm.
39.19. Change the label property object to Teacher weight.

Figure 39.4. ZyxTeacherForm

39.20. Save the part.
39.21. Save the image.

Frameworks Getting Started
Tutorial
39. Dynamic GroupBox106

39.8. Test
39.22. Execute the following code in the workspace (note the lines for ZyxTeacher, ZyxStudent initializeAu-
thorization: initializing authorization for the parent class does not initialize authorization for subclasses):
FW CH 39. Dynamic GroupBox."
[

| club student teacher |
ZyxMember initializeValidation.
ZyxMember initializeAuthorization.
ZyxTeacher initializeAuthorization. "added line"
ZyxStudent initializeAuthorization. "added line"
ZyxEditClub initializeAuthorization.
student := ZyxStudent new

name: 'student1';
weight: 111.

teacher := ZyxTeacher new
name: 'teacher2';
weight: 222.

club := ZyxClub new.
club members add: student.
club members add: teacher.
ZyxEditClub new openOn: club.

]
The following dialog is opened:

Figure 39.5. ZyxEditClub with dynamic group box

39.23. Enable read, write, and delete authorization (check the checkboxes).
39.24. Select student1.

Figure 39.6. ZyxStudentForm in ZyxEditClub dialog

39.25. Select teacher2.

Figure 39.7. ZyxTeacherForm in ZyxEditClub dialog

39.26. Close the dialog.

Frameworks Getting Started
Tutorial

40. Dynamic Notebook 107

40. Dynamic Notebook
The contents of a Notebook can be dynamic.
In this chapter you will:
• Create a relationship betwen ZyxTeacher and ZyxStudent. A Teacher can have any number of Students

(cardinality 0..N), and a Student can have only 1 Teacher (cardinality 1..1).
• Change the name of the ZyxEditClubView2 Notebook. The name will be part of the name of the meth-

ods for implementing the dynamic nature of the GroupBox.
• Create ZyxEditClubViewPort2>>pages. Method pages returns a MicFwMetaControlList with a MicFw-

MetaPart (or no MicFwMetaPart if no member is selected). The MicFwMetaPart contains an accessor
string, part class name and label for the dynamic notebook page.

• Create ZyxAssignedStudentsForm. ZyxAssignedStudentsForm is a notebook page if a ZyxTeacher is
selected.

• Create ZyxAssignedTeacherForm. ZyxAssignedTeacherForm is a notebook page if a ZyxStudent is
selected.

• Create ZyxEditMemberViewPort>>teacherName. teacherName returns the name of the teacher of the
selected student.

• Create ZyxEditMemberViewPort>>teacher. teacher returns the teacher assigned to a student.
• Create ZyxEditMemberViewPort>>students. students returns the collection of students assigned to the

teacher.
• Test.

40.1. Establish 1<->N relationship between ZyxStudent, ZyxTeacher
A ZyxTeacher can have any number of ZyxStudents. A ZyxStudent can have only 1 ZyxTeacher.
40.1. Open the ONB on ZyxMember. Note that ZyxStudent and ZyxTeacher are included in the Object

Net:

Figure 40.1. ZyxMember and subclasses in the ONB

40.2. Add instance variable teacher to ZyxStudent (transacted). Note that the variables inherited from
ZyxMember are displayed in purple:

Figure 40.2. ZyxStudent variables in the ONB

40.3. Add instance variable students to ZyxTeacher (transacted).
40.4. Select ZyxTeacher>>students in the ONB.
40.5. Right-click.

Frameworks Getting Started
Tutorial
40. Dynamic Notebook108

40.6. Select Set Relationship. The Relationship Editor on ZyxTeacher>>students appears:

Figure 40.3. Relationship Editor on ZyxTeacher>>students

40.7. From the Target Class drop-down list: Select ZyxStudent.
40.8. In the Target Instance Variable box: Select teacher.

Figure 40.4. Selected Target class / instance variable ZyxStudent>>teacher in Relationship Editor

40.9. In the Source class box: Check the N checkbox for maximum.

Figure 40.5. Setting ZyxTeacher>>students cardinality to 0...N

40.10. In the Target class box: Select 1 as the minimum.

Figure 40.6. Setting ZyxStudent>>teacher cardinality to 1...1

40.11. Click OK. Note that the type is now defined in the ONB for ZyxTeacher>>students.
40.12. Save all changes.
40.13. Close the ONB.

40.2. Rename notebook in ZyxEditClubView2

Frameworks Getting Started
Tutorial

40. Dynamic Notebook 109

40.14. In ZyxEditClubView2: Change the notebook (not the notebook page) partName to
X_pages_X_X_.
40.15. Save the part.

40.3. Create ZyxEditClubViewPort2>>pages
Method pages returns a MicFwMetaControlList with a MicFwMetaPart (or no MicFwMetaPart if no member
is selected). The MicFwMetaPart contains an accessor string, part class name and label for the dynamic
notebook page.
40.16. Create the following method:
ZyxEditClubViewPort2>>pages

| mpc |
mpc := self newMetaControlListForAspect: #pages.
self model selectedMember isNil ifTrue: [].
(self model selectedMember isKindOf: ZyxTeacher) ifTrue:

[self model selectedMember students isNil ifFalse:
[mpc add: (MicFwMetaPart new

accessorString: 'VOID VOID VOID VOID'
partClassName: #ZyxAssignedStudentsForm
label: ’Students’)]].

(self model selectedMember isKindOf: ZyxStudent) ifTrue:
[self model selectedMember teacher isNil ifFalse:

[mpc add: (MicFwMetaPart new
accessorString: 'VOID VOID VOID VOID'
partClassName: #ZyxAssignedTeacherForm
label: ’Teacher’)]].

^mpc.

40.4. Create ZyxAssignedStudentsForm
ZyxAssignedStudentsForm is a notebook page if a ZyxTeacher is selected.
40.17. Create Visual Part ZyxAssignedStudentsForm:
40.18. Delete the window.
40.19. Add a Form.
40.20. Add a label with property object as Assigned students.
40.21. Add a List with property partName as eMPChConn_students_X_X_name_.

Figure 40.7. ZyxAssignedStudentsForm

40.22. Save the part.

40.5. Create ZyxAssignedTeacherForm
ZyxAssignedTeacherForm is a notebook page if a ZyxStudent is selected.
40.23. Create Visual Part ZyxAssignedTeacherForm:
40.24. Delete the window.
40.25. Add a Form.
40.26. Add a label with property object as Assigned teacher.
40.27. Add a Text field with property partName as eMPChConn_teacherName_.

Figure 40.8. ZyxAssignedTeacherForm

40.28. Save the part.

40.6. Create ZyxEditMemberViewPort>>teacherName

Frameworks Getting Started
Tutorial
40. Dynamic Notebook110

teacherName returns the name of the teacher of the selected student.
40.29. Create the following method:
ZyxEditMemberViewPort>>teacherName

^self model eMBConn teacher name

40.7. Create ZyxEditMemberViewPort>>teacher
teacher returns the teacher assigned to a student.
40.30. Create the following method:
ZyxEditMemberViewPort>>teacher

^self model eMBConn teacher

40.8. Create ZyxEditMemberViewPort>>students
students returns the collection of students assigned to the teacher.
40.31. Create the following method:
ZyxEditMemberViewPort>>students

^self model eMBConn students

40.32. Save the method.
40.33. Save the image.

40.9. Test
40.34. Execute the following code in the workspace:
FW CH 40. Dynamic Notebook."
[

| club student1 student2 teacher1 |
ZyxMember initializeValidation.
ZyxMember initializeAuthorization.
ZyxTeacher initializeAuthorization.
ZyxStudent initializeAuthorization.
ZyxEditClub initializeAuthorization.
student1 := ZyxStudent new

name: 'student1';
weight: 111.

student2 := ZyxStudent new
name: 'student2';
weight: 112.

teacher1 := ZyxTeacher new
name: 'teacher1';
weight: 222.

student1 teacher: teacher1.
student2 teacher: teacher1.
teacher1 students add: student1.
teacher1 students add: student2.
club := ZyxClub new.
club members add: student1.
club members add: student2.
club members add: teacher1.
ZyxEditClub new openOn: club.

]

The following dialog is opened:

Figure 40.9. ZyxEditClub dialog with dynamic notebook

Frameworks Getting Started
Tutorial

40. Dynamic Notebook 111

Note that the notebook contains only the single static page.
40.35. Select teacher1. Note that the notebook contains the static page and a dynamic Students page.

Figure 40.10. ZyxEditClub dynamic notebook with teacher selected

40.36. Select the Students page.

Figure 40.11. Dynamic notebook tab Students

40.37. Select student1. Note that the notebook contains the static page and a dynamic Teacher page.

Figure 40.12. ZyxEditClub dynamic notebook with student selected

40.38. Select the Teacher page.

Figure 40.13. Dynamic notebook tab Students

40.39. Close the dialog.

Frameworks Getting Started
Tutorial
41. Container Icon Tree112

41. Container Icon Tree
In this chapter you will:
• Add a Container Icon Tree that displays the Members in a tree format (and add a heading for the exist-

ing List).
• Create ViewPorts ZyxTeacherViewPort, ZyxStudentViewPort.
• Create class method portName for ZyxTeacherViewPort, ZyxStudentViewPort. These methods specify

the port name for a class when the port name is not specified in the DPB.
• Create methods membersHasChildren, membersChildren for ZyxTeacherViewPort, ZyxStudentView-

Port.
• Create ZyxMember>>asListEntry.
• Test.

41.1. Add Container Icon tree to ZyxEditClubView2
41.1. Add a Container Icon tree to ZyxEditClubView2.

Figure 41.1. Container Icon Tree in the parts palette

41.2. Change the Container Icon tree property partName to
eCBConn_members_eCPConn_selectedMember_.
41.3. Change the Container Icon tree property showIcons to false.
41.4. Add a Label part above the Container Icon Tree.
41.5. Change the Label property object to Member relationships.
41.6. Add a Label part above the List.
41.7. Change the Label property object to Members.

Figure 41.2. ZyxEditClubView2 with Container Icon Tree

41.8. Save the part.

41.2. Create MicFwViewPort subclasses ZyxTeacherViewPort, ZyxStudentViewPort
41.9. In Visual Age Organizer: Create a new part for ZyxApplication with:
• Part class: ZyxStudentViewPort.
• Part type: ViewPort.
• Inherits from: MicFwViewPort.
41.10. In Visual Age Organizer: Create a new part for ZyxApplication with:
• Part class: ZyxTeacherViewPort.
• Part type: ViewPort.
• Inherits from: MicFwViewPort.

41.3. Create portName methods
41.11. Create the following method:
ZyxTeacherViewPort class>>portName
^'ZyxTeacher'

41.12. Create the following method:
ZyxStudentViewPort class>>portName
^'ZyxStudent'

Frameworks Getting Started
Tutorial

41. Container Icon Tree 113

41.4. Create membersHasChildren, membersChildren methods
41.13. Create the following method:
ZyxTeacherViewPort>>membersHasChildren

^self model students notEmpty

41.14. Create the following method:
ZyxTeacherViewPort>>membersChildren

^self model students asArray

41.15. Create the following method:
ZyxStudentViewPort>>membersHasChildren

^self model teacher notNil

41.16. Create the following method:
ZyxStudentViewPort>>membersChildren

^OrderedCollection with: self model teacher

41.5. Create ZyxMember>>asListEntry
41.17. Create the following method:
ZyxMember>>asListEntry

^name

41.18. Save the image.

41.6. Test
41.19. Execute the following code in the workspace:
FW CH 41. Container Icon Tree."
[

| club student1 student2 teacher1 |
ZyxMember initializeValidation.
ZyxMember initializeAuthorization.
ZyxTeacher initializeAuthorization.
ZyxStudent initializeAuthorization.
ZyxEditClub initializeAuthorization.
student1 := ZyxStudent new

name: 'student1';
weight: 111.

student2 := ZyxStudent new
name: 'student2';
weight: 112.

teacher1 := ZyxTeacher new
name: 'teacher1';
weight: 222.

student1 teacher: teacher1.
student2 teacher: teacher1.
teacher1 students add: student1.
teacher1 students add: student2.
club := ZyxClub new.
club members add: student1.
club members add: student2.
club members add: teacher1.
ZyxEditClub new openOn: club.

]

Frameworks Getting Started
Tutorial
41. Container Icon Tree114

The following dialog is opened:

Figure 41.3. ZyxEditClub dialog with Container Icon Tree

41.20. Select teacher1 in the Container Icon Tree. Note that teacher1 is also selected in the List.

Figure 41.4. teacher1 selected in the Container Icon Tree

41.21. Expand the tree for teacher1.
41.22. Select student1 in the teacher1 tree. Note that student1 is also selected in the List.

Figure 41.5. teacher1 -> student1 selected in the Container Icon Tree

41.23. Expand the tree for the selected student1.
41.24. Select teacher1 in the student1 tree. Note that teacher1 is also selected in the List.

Figure 41.6. teacher1 -> student1 -> teacher1 selected in the Container Icon Tree

41.25. Close the dialog.

Frameworks Getting Started
Tutorial

42. Drag & Drop 115

42. Drag & Drop
In this chapter you will
• Add a Multiple Selection List that contains prospective ZyxStudents.
• Create primtive 0..N relationship between ZyxClub>>prospects and ZyxStudent.
• In the ONB: Add variable selection to ZyxClub typed as OrderedCollection.
• Create accessors for ZyxClub>>selectedProspects. selectedProspects are the multiple prospects

selected in the Prospects multiple selection list.
• Create MicFwViewPort subclass ZyxClubViewPort.
• Specify ZyxClubViewPort as ViewPort for eCBConn (in DPB).
• Create ZyxClubViewPort>>prospectsProvidedOperations. This method returns the Drag&Drop opera-

tions supported by the baseConnection prospects of the multiple selection list.
• Create ZyxClubViewPort>>membersAcceptedOperations. This method returns the Drag&Drop opera-

tions supported by the baseConnection members of the container icon tree and the List.
• Create ZyxClubViewPort>>prospectsCanMoveMembers:. This method enables the moving (dragging)

of prospects from the multiple selection list only if the currentMember is a ZyxTeacher (prospects can-
not be assigned to a ZyxStudent).

• Create ZyxClubViewPort>>prospectsMoveMembers:onto:. This is the method that does the actual
dragging of member from the multiple selection list to the other lists.

• Test.

42.1. Add Multiple Selection List to ZyxEditClubView2
42.1. Add a Multiple Selection List to ZyxEditClubView2.

Figure 42.1. Multiple Selection List in the parts palette

42.2. Change the Multiple Selection List property partName to
eCBConn_prospects_eCBConn_selectedProspects_name_.
42.3. Add a Label part above the Multiple Selection List.
42.4. Change the Label property object to Prospects.

Figure 42.2. ZyxEditClubView2 with Multiple Selection List

42.5. Save the part.
42.6. Close the CE.

42.2. Create relationship (primitive) between ZyxClub>>prospects and ZyxStudent
42.7. In the ONB: Add variable prospects (transacted) to ZyxClub.

Frameworks Getting Started
Tutorial
42. Drag & Drop116

42.8. Type as primitive ->N relationship with cardinality 0..N with target ZyxStudent.

Figure 42.3. ZyxClub>>prospects primitive ->N relationship to ZyxStudent in RE

42.3. Create ZyxClub>>selection, selection: (in ONB)
42.9. In the ONB: Add variable selection (transacted)to ZyxClub.
42.10. Type as OrderedCollection.
42.11. Save the changes.
42.12. Close the ONB.

42.4. Create ZyxClub>>selectedProspects, selectedProspects:
42.13. Create the following method:
ZyxClub>>selectedProspects: selectedObjects

^self selection: (selectedObjects isCollection
ifTrue: [selectedObjects]
ifFalse: [Array with: selectedObjects])

42.14. Create the following method:
ZyxClub>>selectedProspects

^self selection

42.15. Save the class.

42.5. Create MicFwViewPort subclass ZyxClubViewPort
42.16. In Visual Age Organizer: Create a new part (open Now) for ZyxApplication with:
• Part class: ZyxClubViewPort.
• Part type: Viewport.
• Inherits from: MicFwViewPort.

42.6. Specify ZyxClubViewPort as ViewPort for eCBConn (in DPB)
42.17. Open the DPB on ZyxEditClub.
42.18. Specify ZyxClubViewPort as the ViewPort for eCBConn.

Figure 42.4. ZyxClubViewPort specified as viewport for eCBConn in DPB

42.19. Save the changes.
42.20. Close the DPB.

Frameworks Getting Started
Tutorial

42. Drag & Drop 117

42.7. Create ZyxClubViewPort>>prospectsProvidedOperations
42.21. Create the following method:
ZyxClubViewPort>>prospectsProvidedOperations
^MicFwOperations enableMove

42.8. Create ZyxClubViewPort>>membersAcceptedOperations
42.22. Create the following method:
ZyxClubViewPort>>membersAcceptedOperations
^MicFwOperations enableMove

42.9. Create ZyxClubViewPort>>prospectsCanMoveMembers:
42.23. Create the following method:
ZyxClubViewPort>>prospectsCanMoveMembers: aLOVP

^self model currentMember isKindOf: ZyxTeacher

42.10. Create ZyxClubViewPort>>prospectsMoveMembers:onto:
42.24. Create the following method:
ZyxClubViewPort>>prospectsMoveMembers: aList onto: aVPOrNil

| mListSelectedItems |
mListSelectedItems := aList first model selectedProspects.
self model members addAll: mListSelectedItems.
self model prospects removeAll: mListSelectedItems.
self model currentMember students addAll: mListSelectedItems.
^true

42.25. Save the class.
42.26. Save the image.

42.11. Test
42.27. Execute the following code in the workspace:
FW CH 42. Drag&Drop."
[

| club prospect1 prospect2 student1 teacher1 |
ZyxMember initializeValidation.
ZyxMember initializeAuthorization.
ZyxTeacher initializeAuthorization.
ZyxStudent initializeAuthorization.
ZyxEditClub initializeAuthorization.
prospect1 := ZyxStudent new

name: 'prospect1';
weight: 111.

prospect2 := ZyxStudent new
name: 'prospect2';
weight: 222.

student1 := ZyxStudent new
name: 'student1';
weight: 123.

teacher1 := ZyxTeacher new
name: 'teacher1';
weight: 135.

student1 teacher: teacher1.
club := ZyxClub new.
club members add: teacher1.
club members add: student1.
club prospects add: prospect1.
club prospects add: prospect2.
ZyxEditClub new openOn: club.

]

Frameworks Getting Started
Tutorial
42. Drag & Drop118

The following dialog is opened:

Figure 42.5. ZyxEditClub dialog with Multiple Selection List (for Drag&Drop)

42.28. Select prospect1 in the Prospects List.
42.29. Attempt to drag prospect1 to Member Relationships List (not allowed, since no ZyxTeacher has
been selected in the Member Relationships List).

Figure 42.6. prospect1 cannot be dropped into Member relationships because no ZyxTeacher selected

42.30. Select student1 in the Member Relationships List.
42.31. Attempt to drag prospect1 to Member Relationships List (again not allowed, since no Zyx-
Teacher has been selected in the Member Relationships List).
42.32. Select teacher1 in the Member Relationships List.
42.33. Drag prospect1 to Member Relationships List.

Figure 42.7. Drag&Dropping prospect1 into Member relationships (ZyxTeacher selected)

42.34. Expand tree for teacher1 in Member Relationships List. Note that prospect1 was assigned to
teacher1.

Figure 42.8. prospect1 after being Drag&Dropped to teacher1

42.35. Close ZyxEditClubView.
42.36. Execute the code in the workspace again.
42.37. Select teacher1.
42.38. Select prospect1 and prospect2 (click on both while holding down the Ctrl key).
42.39. Drag prospect1 and prospect2 to Member Relationships List.

Figure 42.9. Drag&Dropping prospect1 and prospect2 into Member relationships (ZyxTeacher selected)

42.40. Expand tree for teacher1 in Member Relationships List. Note that prospect1 and prospect2 were

Frameworks Getting Started
Tutorial

42. Drag & Drop 119

assigned to teacher1.

Figure 42.10. prospect1 and prospect2 after being Drag&Dropped to teacher1

42.41. Close the dialog.

Frameworks Getting Started
Tutorial
42. Drag & Drop120

Frameworks Getting Started
Appendix A. Glossary 121

Appendix A
Glossary

Frameworks Getting Started
Appendix A. Glossary122

Frameworks Getting Started
Appendix A. Glossary 123

This glossary defines terms that are presented throughout this manual.

->1 relationship: In ->1 relationships, a source instance variable references 0..1 target objects (nil or 1 object).
No target instance variable refers to the source object.

An example of a ->1 relationship is the relationship between Person (source) and PersonName (target). Per-
son instance variable name references 1 PersonName object (a person has only 1 name). No PersonName
instance variable references the Person object (a PersonName object never needs to know which Person
object is referencing it).

->N relationship: In ->N relationships, a source instance variable references min...max target objects (where
min...max is specified by the cardinality).

An example of a ->N relationship would be the relationship between Person (source) and PersonName (tar-
get), with the assumption that a person can have more than 1 name. Person instance variable name refer-
ences min...max PersonName objects, where min = 1 and max is unspecified. No PersonName instance
variable references the Person object.

1<->1 relationship: In 1<->1 relationships, a source instance variable references 0..1 (signified by the "1" on the
RIGHT of "1<->1") target object. The target instance variable references the same 1 (signified by the "1" on
the LEFT of "1<->1") source object or nil. The relationship is not primitive, because the target object should
have a reference to the source object.

An example of a 1<->1 relationship would be the relationship between Customer (source) and Portfolio (tar-
get). Customer instance variable portfolio references 1 Portfolio object. Portfolio instance variable customer
references the 1 Customer object. The relationship is not primitive, because a Portfolio object should know
which object is its Customer.

1<->N relationship: In 1<->N relationships, a source instance variable references N (where N is any number
with the range max...min specified by the cardinality of the relationship) target objects. There is an instance
variable in all of the referenced target objects that reference the 1 source object.

An example of a 1<->N relationship would be the relationship between Employee (source) and Customer (tar-
get). Employee instance variable ownedCustomers would reference N (cardinality min <= N <= cardinality
max) Customer objects. The instance variable ownerEmployee in each referenced Customer object would ref-
erence the 1 Employee object.

Abort a context: A context is aborted when all version objects within the context are dereferenced (ie, none of
the changes that were transacted while the context was active will actually be implemented) and the context
ceases to exist. See: abortcontext.

Abstract Control:: An Abstract Control simplifies external access to the Framework, as such access can only
take place via real Control. There are only a small number of genuinely different Abstract Controls (see com-
mand example in the MVC chapter). The actual access attempts are handled with real Control via an appro-
priate Adapter.

Focus change, issuing commands and transfer of data - including a range of state information like validation
or authorization - will be done in this abstract layer. The real Controls are completely decoupled from all
Domain Process actions and Domain Model data; all technical details of external interfaces (GUI, DDE, ...) are
completely hidden in the Abstract Control implementation.

Abstract Event: Abstract Window Events are the objects that really perform the communication between the
view system and the model world, whereas Abstract Windows are merely containers for Abstract Events
which additionally may provide some services for them. Abstract events can be divided into two functional
types: Abstract events which propagate changes in the model world to the view and Abstract Events which
propagate changes or requests from the user interface to the model world.

Abstract Value: An Abstract Value is a container object that is used by Viewports to keep and propagate infor-
mation about a Viewport Aspect to and from the view. It does not only contain a value for the content of a con-
trol, but also different kinds of state information like whether or not the control should be enabled, what the
(background) color is, which context help text is displayed, and so on.

Abstract View: When a real View is created, an Abstract View begins to exist in its shadow. The lifetime of the
Abstract View is exactly determined by the lifetime of the real View. The Abstract View's purpose is to manage
the Abstract Controls corresponding one-to-one to the real Controls on the view. Moreover, the Abstract View
performs coordination between abstract and platform layer when opening, activating and closing the view. It
communicates with the real Platform View using a Platform Adapter.

Accessor Generator: The accessor generator is the object that creates the OBF accessors for a variable.

Frameworks Getting Started
Appendix A. Glossary124

Active Context: Only 1 context can be active at anytime. While a context is active, any changes to any trans-
acted variables will be recorded in object versions. This variable will be locked by the context, which means
that no changes may be made to the variable while a sibling context or parent context is active as long as this
context exists.

Adapter: A Platform Adapter system is introduced which does the translation of protocols and overcomes the
architectural differences between the host Smalltalk system architecture and the Application Framework
architecture. This makes the core part of the framework itself portable.

Archiver: See: Code Archiver.

Authorization: The access to individual objects controlled on the model level. Authorization works both for
accessing attributes of Domain Objects and for executing Aspects of business processes.

Broker: To allow subsystems or specific requests to them to be exchanged with an own implementation, Applica-
tion Framework uses Broker classes that offer a thin public interface with the internal knowledge how to dele-
gate the call to the subsystem. A common Broker concept enables the developers to modify request
algorithms or subsystem behavior quite easy.

Cardinality: The cardinality of a relationship determines the required min and max number of target objects ref-
erenced by the source variable. In 2-way relationships, there are 2 cardinalities. The second cardinality deter-
mines the requried min and max number of source objects referenced by the target variable.

CB: Connections Browser.

Child context: A child context can change any variable locked by its parent. A variable, having been changed by
the child context, is now locked by the child context. The parent context cannot change a variable locked by
the child. See: parent Context.

Code Generator: See Accessor Generator.

Commit a context: Committing a context has the same effect as committing all transaction levels (TrLevels) in
the context.

Committed target: In a VersionObject: A getter message to a source object will return the committed target
object referenced by the variable if no context is active OR if [the active context read mode is isolate AND the
source object’s variable is not locked by the active context AND the active context is not a child context of the
context with the variable lock]. See: transacted Target.

Concurrent contexts: 2 contexts are concurrent if there is no parent-child relationship between them. Such con-
texts can also be referred to as "sibling" contexts. A sibling context may not change a variable locked by
another sibling context.

Concurrent transactions: See Concurrent Contexts.

Connector: A Connector is used to connect objects (Domain Objects and Domain Processes) to an external
view. The Connector decouples view and model objects and provides access to connected Domain Objects
and Domain Processes on a low level. In this respect, it forms a bridge between the objects, decoupling also
Domain Objects from Domain Processes and thus making them more combinable and exchangeable.

Context: See Transaction Context.

DDL: A language enabling the structure and instances of a database to be defined in a human- and machine-
readable form.

Default Base Connection: The Default Base Connection will be used to hold the Domain Object if no explicit
Base Connection is defined for this process.

Delegation Model: An concept used to decouple subsystems from each other. Application programmers imple-
ment subclasses of Viewport to isolate the model from the interaction subsystem.

Domain Model: A Domain Model is a design phrase for real world concepts like Customer, Policy or Address. Its
instances are called Domain Objects.

Domain Object: Domain objects describe that part of the MVC architecture which corresponds to business
terms. The behavior and structure are primarily defined in this respect. The appropriate tool (object net
browser) from the Object Behavior Framework is used for this purpose, and mapping to the database is
described with STOPF from Persistence Framework . The Domain Object also has open interfaces for con-
necting authorization and validation.

Domain Process: A Domain Process is a design phrase for processing and workflow-oriented tasks and control
flow. Its instances are also called Domain Processes. Due to their controlling-oriented nature, they take also

Frameworks Getting Started
Appendix A. Glossary 125

responsibility for managing a Transaction Context if appropriate.

Domain Processes Browser: A tool, supplied with the Application Framework to browse the exiting Domain
Processes

DPB: Domain Processes Browser.

Extended Description (MicFwExtendedDescription): The object that completely describes the typing of all
variables in a class. The class method createExtendedDescription creates the MicFwExtendedDescription
object.

Framework Logger: The tracing facility of the Framework’s. Events and messages will be routed through this
logger.

Framework: A Framework is a software architecture for certain tasks, which components can be easily reused
by application developers. It provides the system with a basic structure in being a collection of cooperating
and conceptual concise classes and methods, which are designed to support a task-oriented work progress in
application development.

Inactive Context: A non-active context. See: Active Context.

InstanceVariableDescription (MicFwInstanceVariableDescription): The object that completely describes the
typing of a single instance variable in a class. The class method createExtendedDescription creates the MicF-
wInstanceVariableDescription object (which is referenced within the MicFwExtendedDescription object).

Isolated Context: A variable getter sent to a source object that is locked by another context while an isolated
context is active will return not the committed target of the transaction object in the other context, but rather
the uncommitted target. See: uncommitedread context.

M<->N relationship: In M<->N relationships, a source instance variable references M (where M is any number
with the range max...min specified by the cardinality LEFT of the relationship) target objects. There is an
instance variable in all of the referenced target objects that reference the N (where N is any number with the
range max...min specified by the cardinality RIGHT of the relationship) objects of the source object class,
including the current source object.

An example of an M<->N relationship would be the relationship between Person (source) and Address (tar-
get). Person instance variable addresses would reference M (cardinality min <= M <= cardinality max)
Address objects. Address instance variable persons would reference N (cardinality min <= N <= cardinality
max) Person objects, including the current Person object.

Mapper: To maintain registration of loosely coupled elements within the Framework, Mappers are used to set,
get and remove associations between unique, constant names and their corresponding classes, which them-
selves may change or may be reimplemented in your project. Mappers are implemented as singletons and
can be reached through an easy to use interface as they extend Object with one method per Mapper.

MicFwTransactionContext:

Model View Connector: Is the object that holds the child-process- and Base-Connections for one process.

Model View Controller: The MVC (concept of a Model View Controller) defines an architecture intended to yield
a strict decoupling of Domain Model Aspects, flow control and external views - mostly displayed graphically
for user interaction.

Nested transaction levels: The transaction levels in a context are nested if more than 1 level exists.

OBF (Object Behavior Framework): OBF is a library of classes that when added to your Smalltalk development
environment provides a Framework for defining the requirements and restrictions for the behavior of objects.

Object Net Browser: A visual OBF tool that dispayes both the object net of a class and information about the
instance variables of the class (key, validated, transacted, persistent, type, relationship). The visual OBF tools
Type Editor and Relationship Editor are opened from the Object Net Browser.

Object Net: An Object Net consists of objects and its relationships between them.

ObjectVersion (version object): An ObjectVersion is created if a transaction context is active and a target
object is assigned to a transacted variable of a source object. The ObjectVersion is assigned to the highest
TrLevel in the active context. If an ObjectVersion already exists in this TrLevel, it is replaced. The ObjectVer-
sion references the committed target object (committed) and the uncommitted target object (uncommitted) ref-
erenced by the variable.

ONB: Object Net Browser.

Packaging: The process of creating a runtime executable.

Frameworks Getting Started
Appendix A. Glossary126

Parent context: A parent context is a context object that created its child context when it responded to the
newTransactionContext message. The parent context can have any number of child contexts. A parent con-
text can also be a child context. If parent context B has a parent context A and B also has a child context C,
then A and C also have a parent child relationship. See: Child Context.

POM: Persistent Object Manager.

Primitive relationship: A 1-way relationship. See: 1-way relationship.

Relationship Editor: A visual OBF tool for establishing relationships between 2 classes. See: object Net
Browser.

Relationship: In Smalltalk, relationships between objects are simply represented as object pointers. No distinc-
tion is made between complex and simple (scalar) data types since all are full-scale objects and there is con-
ceptually no difference between a relationship and an "embedded" value.

Beyond this, the Mynd Object Behavior Framework provides an elaborated relationship concept maintaining
referential integrity between objects. Those relationships may even be mapped to (relational) databases with
the help of the Mynd Persistence Framework

RelationshipDescription (MicFw~): Object which contains complete information about a relationship.

Running context: A context that has a TrLevel1 (it may have higher levels also).

Sibling contexts: See Concurrent Contexts.

STOPF / ODBC: Smalltalk Object Persistence Framework

Transacted variable: A variable that has been marked as transacted in the Object Net Browser. NOTE:Changes
to a variable will not be transacted even if a transaction context is active if the variable is not marked as trans-
acted.

Transaction Browser: A Visual OBF tool for displaying and manipulating (aborting / committing) transactions.

Transaction Context: A logical unit that can contain transaction levels and that can be related to other contexts
as a parent, sibling, or child.

Transaction Level: A subunit of a transaction context. A transaction level has a single object version for each
variable of each object that was assigned a new target object while the the transaction level was the highest
level in its context and its context was active.

Transaction Manager: The transaction manager is a single instance (singleton) of MicFwTransactionManager
and manages all running contexts.

Transaction: A defined state of an object that runs under transactional control will be stored. If the interaction on
this object fails by some reason, this object can be restored to this state, if the interaction succeeds, the per-
sistent state of this object will be modified to this new state and the old state will be dropped.

TrLevel1, 2, ...: Transaction level 1, 2, ...

Type Converter: A type converter is assigned to a typed variable (including variables in a relationship). When an
object is assigned to the variable that is not of the type specified for the variable, the type converter will be
used to attempt to create the correct type of object containing the information in the original object and assign
this correct type of object to the variable.

Type Editor: A visual tool for setting a variable type as a simple type (Integer, Date, etc.). The type converter and
size / scale for the variable type can also be selected. The Type Editor is opened from the Object Net Browser.

TypeDescription (MicFw~): Object which contains complete information about the typing of an instance vari-
able.

Typing: The term typing defines the assignment of types (normally basic classes like Integer or String) to
instance variables. Since Smalltalk is an untyped language, the Mynd Object Behavior and Persistence
Frameworks introduce typing in order to support storing of objects into (typed) relational databases.

UML (Unified Markup Language): Graphical notation for OO analysis and design.

uncommitedRead context: If an ObjectVersion exists for aSourceObject>>aSOVariable (ie, aSOVariable is
transacted and anUncommittedTargetObject was assigned to aSOVariable while aContext1 was active): If
aContext2 is an active uncommitedRead context and getter message sOVariable is sent to aSourceObject,
the object returned will be anUncommittedTargetObject. See: Isolated context.

Note: The message is spelled "uncommitedRead".

Frameworks Getting Started
Appendix A. Glossary 127

Uncommitted target: In a VersionObject: A getter message to a source object will return the uncommitted target
object referenced by the variable if [the active context read mode is uncommitedReadisolate AND the active
context does not have a lock on the source object variable AND the active context is not a child context of the
context that has the lock] OR if the source object’s variable is locked by the active context. See: Committed
Target.

Validation of ExtendedDescription: Validation of an ExtendedDescription involves checking the Object Net for
errors.

Validation: Like the authorization service, validation ties in at the model layer and is used for checking value-
based access to and from attributes based on certain rules.

VariableDescription (MicFw~): Object which contains complete information about an instance variable.

Viewport: In order to separate view-related state handling from Domain Objects and Domain Processes, Appli-
cation Framework implements a Viewport as a Delegation Model concept. Functionality for transportation and
the filtering of data and states concerning an object net from a certain object's or view's direction is delegated
from the Domain Models to them, leading to a more lightweight and view independent kind of Domain Object.

Viewports "learn" the dependencies between their Aspects and the corresponding Model Aspects while run-
ning the application. This read trace frees the programmer from dealing with changed-events and allows
Application Framework to update both sides automatically and in a generic way.

A Dispatcher is called Viewport if Domain Objects are concerned.

Frameworks Getting Started
Appendix A. Glossary128

Frameworks Getting Started
List Of Figures 129

List Of Figures

Figure 1.Dialog for selecting configuration map versions ..13
Figure 2.micApplicationExamples R3.4 V1.0a in dialog for selecting configuration map versions14
Figure 3.micFrameworksBaseDevelopment in configuration maps browser ...14
Figure 4.micFrameworks menu. ..15
Figure 3.1. Importing ZyxTutorial application versions ..22
Figure 3.2. Selected versions of ZyxTutorial ..23
Figure 3.3. ZyxTutorial selected as application to load ..23
Figure 3.4. Selected edition of ZyxTutorial ..23
Figure 4.1. ZyxTutorial in the application list. ...24
Figure 5.1. New part dialog settings for ZyxMember ...25
Figure 5.2. Object Net Browser on ZyxMember ...25
Figure 5.3. Variable "name" added to ZyxMember within the ONB ...26
Figure 6.1. DPB on ZyxEditMember ..27
Figure 6.2. Dialog for selecting ZyxMember as the domain object class for ZyxEditMember27
Figure 6.3. Connection from ZyxEditMember to ZyxMember in DPB ..28
Figure 6.4. DP dialog after ZyxEditMember / ZyxMember connections renamed ...28
Figure 7.1. ZyxEditMemberView initial window in the Composition Editor ..29
Figure 7.2. Label part in the parts palette ..29
Figure 7.3. Text field part in the parts palette ..29
Figure 7.4. ZyxEditMemberView with label and text field ..30
Figure 7.5. Assigning ZyxEditMemberView to ZyxEditMember in the DPB ...30
Figure 7.6. Display of DO ZyxMember attributes in View ZyxEditMemberView ..30
Figure 7.7. Improper object type (Integer) auto-converted and displayed in text field (String required)31
Figure 8.1. Connections Browser for ZyxEditMemberView ...32
Figure 9.1. 2 views of same object. ...33
Figure 9.2. Non-transacted changes in a view are reflected in other views ...33
Figure 9.3. Non-transacted changes to the same object can be made in multiple dialogs34
Figure 10.1. Defining transaction handling for ZyxEditMember (Transaction Main) ..35
Figure 10.2. Default settings in the DPB for Transaction Main ..35
Figure 10.3. Specifying ZyxMember>>name as transacted ..36
Figure 10.4. Transaction Browser dialog ...36
Figure 10.5. Open 2 views of transacted object attribute ...36
Figure 10.6. Transaction contexts created when 2 views of object opened ..37
Figure 10.7. No transacted changes for the object whose attributes havent been changed in the view37
Figure 10.8. No transacted changes for the object whose attributes havent been changed in the view37
Figure 10.9. The second view of an object is updated after transacted changes in the first view38
Figure 10.10. In the TB: Objects with transacted changes for selected context / TrLevel138
Figure 10.11. In the TB: Variables with transacted changes for selected object ...38
Figure 10.12. In the TB: Version value (uncommitted target) for selected variable ...38
Figure 10.13. In the TB: Variable value (committed target) for selected variable ..39
Figure 10.14. Aborted changes as reflected in the views ..39
Figure 11.1. Defining ZyxEditMember as an ISOLATED transacted process in the DPB40
Figure 11.2. Isolated transacted changes in multiple views ...40
Figure 12.1. DB Control Center dialog ...41
Figure 12.2. Defining the new database name ..41
Figure 12.3. New DB2 database in the Control Center ..41
Figure 12.4. ODBC Data Source Administrator dialog ...42
Figure 12.5. Create New Datasource dialog ..42
Figure 12.6. IBM DB2-ODBC-Driver add dialog ..42
Figure 12.7. ODBC Data Source Administrator dialog after datasource ZYX added ...43
Figure 13.1. Adding MicFwPersistenceOdbc as a ZyxTutorial prerequisite ..44
Figure 14.1. Type Editor dialog ..45
Figure 14.2. Type Editor class settings for ZyxMember>>name ...45
Figure 14.3. ZyxMember>>name type information as displayed in ONB ..46
Figure 14.4. ZyxMember>>id settings in the ONB ...46
Figure 15.1. Setting ZyxEditMember Transaction Main as persistent ...47
Figure 16.1. POM Generator dialog ...48

Frameworks Getting Started
List Of Figures130

Figure 16.2. Selecting ZyxMember in the POM possible classes list .. 48
Figure 16.3. Selecting the POM class ... 48
Figure 16.4. Configurate POM dialog .. 49
Figure 16.5. Dialog for selecting a POM configuration .. 49
Figure 16.6. STOPF / ODBC dialog .. 49
Figure 16.7. Viewing table information for tables defined within POM .. 50
Figure 17.1. Connecting POM to a database: Select Data Source dialog. ... 51
Figure 17.2. Connect to DB2 Database dialog .. 52
Figure 17.3. Dialog for choosing tables for DDL export .. 52
Figure 17.4. Dialog for selecting target datbase for DDL export ... 52
Figure 17.5. DDL code for creating tables ... 52
Figure 17.6. Interactive SQL dialog ... 53
Figure 17.7. Dialog for selecting POM for ISQL dialog ... 53
Figure 17.8. DDL code in the ISQL dialog (with trailing colon deleted) ... 53
Figure 18.1. Sample contents of ZyxMember in database .. 54
Figure 18.2. ZyxEditMemberView views of 2 objects .. 55
Figure 18.3. ZyxEditMemberView’s show that changes were saved to the database 55
Figure 18.4. Changes made in dialogs are saved to the database ... 55
Figure 19.1. Push button part in the parts palette ... 56
Figure 19.2. ZyxEditMemberView with commit and aborts buttons (4) ... 56
Figure 19.3. ZyxEditMemberView with commit / abort buttons ... 57
Figure 19.4. Version value (uncommitted target) for ZyxMember>>name in the TB .. 57
Figure 19.5. Version value (none) after change committed in view .. 57
Figure 20.1. Adding weight field to ZyxEditMemberView .. 59
Figure 20.2. New mapping in the STOPF / ODBC dialog for ZyxMember .. 60
Figure 20.3. Tab Columns in the Alter ZYXMEMBER dialog .. 60
Figure 20.4. Selecting the data type for the added column ... 61
Figure 20.5. ZyxEditMember view with weight label / text field ... 61
Figure 20.6. Changing weight to a valid value in ZyxEditMemberView ... 61
Figure 20.7. New weight stored to database ... 62
Figure 20.8. Attempting to change weight to an invalid value in ZyxEditMemberView 62
Figure 22.1. Relationship Editor dialog ... 64
Figure 22.2. Defining cardinality in the Relationship Editor ... 65
Figure 23.1. Changing the name of the connection to ZyxEditClub in the DPB .. 66
Figure 23.2. Changing the name of the connection to ZyxClub in the DPB .. 66
Figure 23.3. Adding a child process connection to ZyxEditMember in the DPB ... 67
Figure 24.1. Drop-down list in the parts palette ... 68
Figure 24.2. Drop-down list in ZyxEditClubView ... 68
Figure 24.3. Naming convention settings for drop-down list ... 68
Figure 24.4. ZyxEditClubView with edit button .. 69
Figure 24.5. ZyxEditClubView with commit and abort buttons .. 69
Figure 24.6. Assigning ZxyEditClubView to ZyxEditClub in DPB .. 69
Figure 24.7. ZyxEditClubView dialogs ... 70
Figure 24.8. Selecting member from drop-down list selects member in other drop-down list 70
Figure 24.9. 2 ZyxEditClub dialogs each with its own ZyxEditMember child dialog .. 70
Figure 25.1. Defining transaction settings for child connection to ZyxEditMember ... 72
Figure 25.2. 2 ZyxEditClub dialogs with ZyxEditMember child dialogs ... 73
Figure 25.3. Transacted changes in child are not reflected in parent ... 73
Figure 25.4. Changes abort in LEFT child dialog are aborted in RIGHT child dialog also. 73
Figure 25.5. Committed changes in the child are immediately reflected in parent view 74
Figure 26.1. Defining transaction settings for ZyxEditClub in DPB ... 75
Figure 26.2. Uncommitted changes in child are displayed in parent ... 76
Figure 27.1. addMember and deleteMember buttons in ZyxEditClubView ... 77
Figure 28.1. Enabling Hover Help for a view ... 78
Figure 28.2. Settings for ZyxApplication part ZyxMemberViewPort .. 78
Figure 28.3. Assigning ZyxMemberViewPort as the ViewPort for the child connection to ZyxMember 79
Figure 28.4. HoverHelp for name in ZyxEditMember dialog ... 79
Figure 28.5. F1 Help for name in ZyxEditMember dialog .. 79
Figure 29.1. ZyxEditClubView with disabled edit button ... 80
Figure 29.2. ZyxEditClubView with enabled edit button .. 81
Figure 30.1. The List part in the parts palette .. 82
Figure 30.2. ZyxEditClubView2 with List ... 82

Frameworks Getting Started
List Of Figures 131

Figure 30.3. Assign ZyxEditClubView2/ZyxEditClubViewPort2 to ZyxEditClub in the DPB83
Figure 30.4. ZyxEditClubView with List (instead of drop-down list) ...83
Figure 31.1. Group Box in the parts palette ...85
Figure 31.2. ZyxEditMemberView with Personal info group box ...85
Figure 31.3. ZyxMember>>weight in the Personal info group box ..85
Figure 31.4. Assign ZyxEditMemberViewPort to ZyxEditMember connection eMPConn in the DPB86
Figure 31.5. ZyxMemberView Personal info GroupBox not displayed if weight excessive86
Figure 31.6. ZyxMemberView Personal info GroupBox displayed if weight not excessive87
Figure 32.1. ZyxEditClubView with static GroupBox for ZyxEditMember ..88
Figure 32.2. ZyxEditClub static GroupBox for ZyxEditMember with commit/abort buttons88
Figure 32.3. ZyxEditClub dialog with hidden ZyxEditMember GroupBox ..89
Figure 32.4. ZyxEditClub dialog after ZyxMember selected from list ...90
Figure 32.5. ZyxEditClub dialog with disabled ZyxEditMember groupbox ...90
Figure 32.6. ZyxEditClub / ZyxEditMember dialogs ...90
Figure 33.1. PM Notebook in the parts palette ..91
Figure 33.2. ZyxEditClubView with PM Notebook ...91
Figure 33.3. Notebook page in the parts palette ..91
Figure 33.4. ZyxEditClubView Notebook with page Weight ...91
Figure 33.5. ZyxEditClubView with finished notebook page ..92
Figure 33.6. ZyxEditClub dialog with hidden GroupBox and PM notebook ...92
Figure 33.7. ZyxEditClub dialog with visible GroupBox and PM Notebook ...93
Figure 34.1. Toggle button (checkbox) in the parts palette ..95
Figure 34.2. ZyxEditClubView2 with the authorizeReadWeight, authorizeWriteWeight toggle buttons95
Figure 34.3. ZyxEditClub dialog with authorizeReadWeight / authorizeWriteWeight toggle buttons96
Figure 34.4. ZyxEditClub dialog after member selected ..96
Figure 34.5. ZyxEditClub dialog after reading of ZyxMember attribute weight unauthorized96
Figure 34.6. ZyxEditClub dialog after writing of ZyxMember attribute weight unauthorized97
Figure 35.1. authorizeDeleteMember toggle button in ZyxEditClubView2 ...98
Figure 35.2. ZyxEditClub dialog with authorizeDeleteMember toggle button ..99
Figure 35.3. ZyxEditClub dialog after ZyxEditClub method deleteMember unauthorized99
Figure 36.1. 2 ZyxEditClub dialogs ..100
Figure 36.2. 2 ZyxEditClub and LEFT ZyxEditMember dialogs ...101
Figure 36.3. Changes in RIGHT ZyxEditClub dialog are reflected in all dialogs ..101
Figure 39.1. Dynamic group box in ZyxEditClubView2 ..104
Figure 39.2. Form part in the parts palette ...105
Figure 39.3. ZyxStudentForm ..105
Figure 39.4. ZyxTeacherForm ...105
Figure 39.5. ZyxEditClub with dynamic group box ...106
Figure 39.6. ZyxStudentForm in ZyxEditClub dialog ...106
Figure 39.7. ZyxTeacherForm in ZyxEditClub dialog ...106
Figure 40.1. ZyxMember and subclasses in the ONB ...107
Figure 40.2. ZyxStudent variables in the ONB ...107
Figure 40.3. Relationship Editor on ZyxTeacher>>students ..108
Figure 40.4. Selected Target class / instance variable ZyxStudent>>teacher in Relationship Editor108
Figure 40.5. Setting ZyxTeacher>>students cardinality to 0...N ..108
Figure 40.6. Setting ZyxStudent>>teacher cardinality to 1...1 ...108
Figure 40.7. ZyxAssignedStudentsForm ..109
Figure 40.8. ZyxAssignedTeacherForm ...109
Figure 40.9. ZyxEditClub dialog with dynamic notebook ...110
Figure 40.10. ZyxEditClub dynamic notebook with teacher selected ..111
Figure 40.11. Dynamic notebook tab Students ..111
Figure 40.12. ZyxEditClub dynamic notebook with student selected ...111
Figure 40.13. Dynamic notebook tab Students ..111
Figure 41.1. Container Icon Tree in the parts palette ..112
Figure 41.2. ZyxEditClubView2 with Container Icon Tree ...112
Figure 41.3. ZyxEditClub dialog with Container Icon Tree ...114
Figure 41.4. teacher1 selected in the Container Icon Tree ..114
Figure 41.5. teacher1 -> student1 selected in the Container Icon Tree ...114
Figure 41.6. teacher1 -> student1 -> teacher1 selected in the Container Icon Tree114
Figure 42.1. Multiple Selection List in the parts palette ...115
Figure 42.2. ZyxEditClubView2 with Multiple Selection List ..115
Figure 42.3. ZyxClub>>prospects primitive ->N relationship to ZyxStudent in RE ..116

Frameworks Getting Started
List Of Figures132

Figure 42.4. ZyxClubViewPort specified as viewport for eCBConn in DPB .. 116
Figure 42.5. ZyxEditClub dialog with Multiple Selection List (for Drag&Drop) .. 118
Figure 42.6. prospect1 cannot be dropped into Member relationships because no ZyxTeacher selected 118
Figure 42.7. Drag&Dropping prospect1 into Member relationships (ZyxTeacher selected) 118
Figure 42.8. prospect1 after being Drag&Dropped to teacher1 .. 118
Figure 42.9. Drag&Dropping prospect1 and prospect2 into Member relationships (ZyxTeacher selected) 118
Figure 42.10. prospect1 and prospect2 after being Drag&Dropped to teacher1 ... 119

Frameworks Getting Started
Index 133

Index

Numerics
0..N ... 64

A
Abort (transaction context) 39
abortAndBegin

Button.. 56
abortAndCloseView

Button.. 56
Abstract Control.. 123
Abstract Event .. 123
Abstract Value .. 123
Abstract View ... 123
AbtAppBldrView ... 29
Active context ... 35
active context ... 37
Adapter ... 123, 124
Add (DB2) ... 60
Add child connection 66
Add column (DB2 dialog) 60
Application Framework User’s Guide 27
architecture... 125
authorization 124, 127
Autostart mode ... 72

B
Base Connection 27, 124
Beispielinhalt .. 54
Broker ... 124
Browse Object Net 25
Browse Persistence Manager... (menu item) 54
Browse View Connectors 32

C
Cardinality

Defined.. 64
cardinality ... 64
child process .. 66
Choose a stored POM Generator 59
Choose Persistence Manager (dialog) 54
Column name (DB2) 60
Columns (tab in DB2) 60
combinable ... 124
Commit (menu item)..................................... 53
commitAndBegin .. 74

Button.. 56
commitAndCloseView 74

Button.. 56
Configurate POM... (menu item) 49
Configuration maps 13

Configuration Maps Browser 13
Connect to database (menu item) 51
Connections ... 28
Connections Browser................................... 32
Connector... 124
control flow ... 124
Copy ... 82
currentMember... 64

D
Data type (DB2) ... 61
DDL

Defined ... 51
Execute against DB 53
Generate ... 52

Default Base Connection 124
Default View ... 30
Defined (transaction) 35
Delegation Model 124
deleteMember .. 77
Disconnect from database (menu item) 54
Disconnect the POM? (message) 53
Domain Model .. 124
Domain Object 25, 124
Domain Object Class 25
Domain Process................................... 27, 124
Domain Processes Browser 27, 125

E
eCBConn.. 66
eCBConn_members_eCPConn_selectedMember_
68
eCBConn_members_eCPConn_selectedMember_name_
82
eCPConn.. 66
edit.. 67
Edit button .. 66
editEnabled .. 80
eMBConn ... 28
eMPChConn .. 67
eMPChConn_personalInfo_ 85
eMPConn ... 28
Example code .. 21
Execute once (menu item)........................... 53
Export (menu) .. 52

F
F1 Help... 78
filter (ViewPort as) 82
Framework ... 125
Framework Logger..................................... 125

Frameworks Getting Started
Index134

Full menus .. 24
FW CH (#)... 21
fw_ex.txt.. 21

G
generic viewport ... 78
global name for persistence manager.......... 50
GroupBox.. 85
GroupControl .. 85

H
Hover Help .. 78
hoverHelpEnabled .. 78

I
Inactive context... 35
inactive context ... 37
initializeValidation ... 63
interaction ... 124
Interactive SQL (dialog)................................ 53
Interactive SQL (menu item) 53
Isolated (transaction contexts) 40
ISQL.. 51

K
key variable .. 45

L
Library ... 13
Logger... 125

M
Machine Data Source (dialog)...................... 51
Mapper.. 125
members ... 64
mgr45.dat.. 21
MicFwDomainObject 25
MicFwDomainProcess.................................. 27
MicFwPersistenceManagerOdbc 53, 54

POM class ... 48
MicFwTechnicalTransactionContext 36
MicFwTransactionContext............................ 37
MicFwTransactionContext is not running..... 39
MicFwViewPort ... 78
model .. 124
Model View Connector 125
MVC .. 124, 125

N
N (RE checkbox) .. 64
name parts.. 68
nameHelpText .. 79
nameHoverHelpText 78

naming convention 29
newChildProcessConnection....................... 66
newDefaultBaseConnection 28
newMember ... 77

O
OBF User’s Guide .. 25
Object Behavior Framework 124, 126
Object mapping

STOPF.. 50
object net.. 65, 125
Object Net -> POM Generator 48
Object Net Browser 25, 124
Object version .. 35, 37
ODBC (ODCTalk) Pom for DB2 Version 5 .. 49
openOn

... 67

P
packaging ... 125
parent ... 67
partName.. 29
Password (database) 52
Persistence Framework 124, 126
Persistent class

Adding variable .. 59
Persistent contexts (DP) 47
persistentObjectManager............................. 47
Personal info .. 85
personalInfoVisible....................................... 85
Platform Adapter .. 123
POM

Configuration ... 48
Connecting to database.............................. 51
Creating .. 48
Defined ... 48
Disconnect from DB 54

POM class
Defined ... 48

POM Generator
Defined ... 48

POM possible classes list 48
portable .. 124
Primitive.. 64
primitive relationship 64
Processes Hierarchy.................................... 27
processing .. 124

R
read trace ... 127
real Control... 123
real View... 123
real world concepts 124
referential integrity 126
relational databases................................... 126
relationship 64, 125, 126

Frameworks Getting Started
Index 135

Relationship Editor 64
runtime executable 125

S
Schema / Export (menu item) 52
Select Data Source (dialog) 51
selectedMember... 67

... 67
Set Relationship (menu item)....................... 64
Size... 45
Source class (RE) .. 64
Statement / Commit (menu item) 53
Statement / Execute once (menu item) 53
STOPF.. 124
STOPF / ODBC .. 49
Store Generator settings 50
Store Globally As.. 50
Store globally as... (menu item) 49

T
Target Class ... 64
Title (window) ... 29
Transacted (ONB checkbox)........................ 36
Transacted process...................................... 35
transaction .. 126
Transaction Browser 36
Transaction Connection Transaction Handling.
72
Transaction Context 125
Transaction context 72
Transaction Main Transaction Handling 75
transaction write conflict exception 39
TrLevel1.. 35, 37
Type Editor ... 45
typing .. 126

U
update... 127
Use own context... 72
User-ID (database)....................................... 52

V
validation .. 124, 127
Variable lock ... 39
Variable value... 38
Version value.. 38
View .. 29
ViewPort ... 78
Viewport...................................... 123, 124, 127

W
weight ... 59
weightNotExcessive 85
workflow.. 124

Z
ZyxClub .. 64
ZyxEditClub.. 66
ZyxEditClubView .. 68
ZyxEditClubView2.. 82
ZyxEditClubViewPort2 82
ZyxEditMember .. 27
ZyxEditMemberView 29
ZyxEditMemberViewPort 80
ZYXMEMBER

STOPF.. 50
ZyxMember .. 25
ZyxMemberViewPort 78
ZyxPom .. 50
ZyxPomGenerator 49
ZyxTutorial ... 24

