
Object Behavior Framework User’s Guide 1

Object Behavior Framework

User’s Guide

For Frameworks Version 5.0

GUI

Model

Object Behavior Framework

DB

Mapping

GUI Logic

Object Behavior Framework User’s Guide2

Object Behavior Framework User’s Guide
Copyright and trademarks 3

Copyright and trademarks

Copyright
Copyright 2000 Mynd. All rights reserved.
Mynd Frameworks V5.0.
Object Behavior Framework User’s Guide, July 2000.
For more information about Mynd Frameworks, please contact:

Mynd SoftwareConsult GmbH
Taubenholzweg 1
D-51105 Köln (Cologne, Germany)
Tel. : (+49) (0) 221 - 8029 - 0
FAX : (+49) (0) 221 - 8029 - 999
Email: info@mynd.de
Web: www.mynd.com

Trademarks
ENVY is a registered trademark of the Object Technology International corporation.
Visual Age for Smalltalk and OS/2 are registered trademarks of the International Business Machines Corp.
Windows and Windows/NT are registered trademarks of the Microsoft Corp.

Object Behavior Framework User’s Guide
Copyright and trademarks4

Object Behavior Framework User’s Guide
Table of Contents 5

Table of Contents

Copyright and trademarks ..3

Table of Contents ...5

Documentation Overview ..9
Congratulations..9
Object Behavior Framework User’s Guide (this manual)...9
Other manuals ...10
Training from PMS Micado ..10

Release Notes ...11
Version 5.0...11
Version 4.0...11
Version 3.5...11
Release 3.4 Version 1.0...12
Release 3.3 Version 1.3...13

Installing OBF ...15
System requirements...15
Installation Overview..15
Importing OBF configuration maps ..15
Loading OBF configuration maps ..15
OBF tools available from micFrameworks menu ...16

1
Concepts ..17
1.1. What is OBF? ..19

1.1.1. Object behavior..19
1.1.2. Framework ...20

1.2. Variable types / relationships ..21
1.2.1. What are variable types / relationships ..21
1.2.2. Why variable types / relationships are not supported by Smalltalk..21
1.2.3. Why variable types / relationships are supported by OBF ...22
1.2.4. How variable types / relationships are implemented by OBF ..22

1.3. Transactions ..27
1.3.1. What are transactions ..27
1.3.2. Why are transactions not supported in Smalltalk...27
1.3.3. Why are transactions supported by OBF ...27
1.3.4. How transactions are implemented by OBF ..28

2
Tutorial ...47
2.1. Tutorial overview ...49
2.2. Using the example code (obf_ex.txt) ...50

2.2.1. Example code in this User Guide...50
2.2.2. Executing example code in obf_ex.txt ...50

2.3. Create ZyxTutorial application ..51
2.3.1. Create application ZyxTutorial ...51
2.3.2. Specify Prerequisites ...51

2.4. Create new model / class (OMB) ..52
2.4.1. Create new model..52
2.4.2. Create a class within the model (not in VA) ...53
2.4.3. Save the model ..53

Object Behavior Framework User’s Guide
Table of Contents6

2.4.4. Verify that class ZyxClass1 does not exist in VA .. 53

2.5. Reopen / modify model ... 54
2.5.1. Reopen (overwrite / reopen) the model... 54
2.5.2. Modify model / Discard all changes .. 54

2.6. Export model ... 55
2.6.1. Export to .st files (.st file for each class).. 55
2.6.2. Export to an .xml file (single .xml file for all classes) ... 55

2.7. Save model to VisualAge .. 56
2.7.1. Saving to VA from within OMB.. 56
2.7.2. Using "File in" to save contents of .st file to VA .. 56

2.8. Classes ... 57
2.8.1. Default application for new classes... 57
2.8.2. Create ZyxClass1 subclass ZyxClass11 ... 57
2.8.3. Create MicFwDomainObject subclass ZyxClass2 .. 57
2.8.4. Remove classes from model... 58
2.8.5. Add MicFwDomainObject subclass ZyxClass1 from VA to model .. 58
2.8.6. Add ZyxClass1 subclass ZyxClass11 from VA to model .. 58
2.8.7. Finding a class in the model.. 58

2.9. Variables / Framework accessors ... 59
2.9.1. Add variable var1, var2 to ZyxClass1 ... 59
2.9.2. Framework accessors generated when model variables saved to VA.. 59
2.9.3. Modify accessors for ZyxClass1>>var1 .. 60
2.9.4. Modify accessor prefix defaults for all classes .. 60
2.9.5. Remove var2... 61
2.9.6. Restore var2; Make a virtual variable.. 61
2.9.7. Make var2 a non-virtual variable; Redefine var2 in subclass ZyxClass11 .. 61
2.9.8. Remove redefine of var2 in subclass ZyxClass11 .. 61

2.10. Variable typing (Integer) (with manual type validation, manual/automatic type conversion)
63

2.10.1. Delete classes / Create ZyxPerson, ZyxPerson>>id... 63
2.10.2. Type ZyxPerson>>id as Integer .. 63
2.10.3. Framework accessors for typed variable .. 63
2.10.4. Test with no validation... 63
2.10.5. Test manual validation (message isTypeValid)... 64
2.10.6. Test manual conversion (message convertValues) using MicFwTypeConverter 64
2.10.7. Test manual conversion (message convertValues) using MicFwTypeConverter 65
2.10.8. Specify automatic conversion (checkbox validateType) ... 66
2.10.9. Framework accessors for automatic conversion ... 66
2.10.10. Test automatic conversion using MicFwTypeConverter ... 66
2.10.11. Test automatic conversion using MicFwEmptyTypeConverter ... 66

2.11. Variable typing (Date) ... 67
2.11.1. Create ZyxPerson>>dateOfBirth with type Date ... 67
2.11.2. Test ... 67

2.12. Persistent / Key variables ... 69
2.12.1. Specify ZyxPerson>>id as persistent .. 69
2.12.2. Framework accessors for Persistent variable ... 69
2.12.3. Specify ZyxPerson>>id as a key variable ... 69
2.12.4. Specify ZyxPerson>>dateOfBirth as a persistent variable.. 69
2.12.5. Application: Key variable for persistence object.. 69
2.12.6. Application: Date variable for persistence object .. 70

2.13. ->1 relationship ... 71
2.13.1. Create MicFwDomainObject subclass ZyxName with variables firstName, lastName 71
2.13.2. Add variable ZyxPerson>>name... 71
2.13.3. Establish a ->1 (primitive) relationship from ZyxPerson>>name to 1..1 ZyxName objects 71
2.13.4. Test ... 72
2.13.5. Application: ->1 relationship .. 73

2.14. Adding class nets to the model ... 75

Object Behavior Framework User’s Guide
Table of Contents 7

2.14.1. Create ZyxName subclass ZyxNameSubclass; Save to VA..75
2.14.2. Add ZyxNameSubclass class net to model..75
2.14.3. Add ZyxName class net to model ..75
2.14.4. Add ZyxPerson class net to model ..75

2.15. ->N relationship ...77
2.15.1. Create MicFwDomainObject subclass ZyxAddress with variable cityName......................................77
2.15.2. Add variable ZyxPerson>>addresses..77
2.15.3. Establish a ->N (primitive) relationship from ZyxPerson>>addresses to 1..3 ZyxAddress objects....77
2.15.4. Test ..78
2.15.5. Review how the OBF classes and methods you created can be used by PFW.79

2.16. 1<->1 relationship ...81
2.16.1. Create classes and variables...81
2.16.2. Set ZyxCustomer>>portfolio type as 1<->1 relationship..81
2.16.3. Review how the OBF classes and methods you created can be used by PFW.82

2.17. 1<->N relationship ...83
2.17.1. Create classes and variables...83
2.17.2. Set ZyxEmployee>>ownedCustomers type as 1<->N relationship..83
2.17.3. Review how the OBF classes and methods you created can be used by PFW.84

2.18. M<->N relationship ..85
2.18.1. Create classes and variables...85
2.18.2. Set ZyxPerson>>addresses type as M<->N relationship...85
2.18.3. Review how the OBF classes and methods you created can be used by PFW.86

2.19. 1 context: 1 (non-nested) TrLevel ...88
2.19.1. Cleaning up..88
2.19.2. Create non-running, non-active context...88
2.19.3. Specify ZyxName>>firstName as transacted...89
2.19.4. Assign an object to a variable (with no active context) ..89
2.19.5. Assign an object to a variable (with active context) ...90
2.19.6. TrLevel1: Committing...91
2.19.7. TrLevel1: Aborting..92
2.19.8. Committing a single-level context ..93
2.19.9. Aborting a single-level context ...93

2.20. 1 context: Multiple (nested) TrLevels ..94
2.20.1. Create context, TrLevel1, TrLevel2..94
2.20.2. Abort highest level (TrLevel2) ..95
2.20.3. 2-level transaction: Abort all TrLevels..95
2.20.4. Commit highest level (TrLevel2) ..96
2.20.5. 2-level transaction: Commit all TrLevels ..97
2.20.6. Aborting a multi-level context...98
2.20.7. Committing a multi-level context ..98

2.21. Multiple contexts: Concurrent ..99
2.21.1. Create 2 (concurrent) contexts; mode uncommitedRead (default) ..99
2.21.2. 2 concurrent contexts; mode isolate ..100
2.21.3. Attempt to change variable in context that is locked by other context ...101

2.22. Multiple contexts: Parent / Child ..102
2.22.1. Context and 2 child contexts (child and grandchild) ..102
2.22.2. Test in uncommittedRead and isolate modes for a parent / child..104
2.22.3. Analyze how a variable lock can be transferred ..105

3
Tools ..107
3.1. Introduction ...109
3.2. Object Model Browser (OMB) ...110

3.2.1. Primary functions ...110
3.2.2. Opening OMB ..110
3.2.3. OMB dialog ..111

Object Behavior Framework User’s Guide
Table of Contents8

3.3. Object Net Browser (NetBrowser) .. 119
3.3.1. Primary functions .. 119
3.3.2. Opening the Net Browser: ... 119
3.3.3. Classes window .. 119
3.3.4. Net Browser submenu Class... 119
3.3.5. Net Browser submenu Variable .. 121
3.3.6. Variable parameters.. 123

3.4. Type Editor .. 124
3.4.1. Primary functions .. 124
3.4.2. Opening the Type Editor ... 124
3.4.3. Fields / checkboxes in the type editor ... 124

3.5. Relationship Editor .. 125
3.5.1. Primary functions .. 125
3.5.2. Opening the Relationship Editor ... 125
3.5.3. Fields in the Relationship Editor.. 125

3.6. Transaction Browser ... 127
3.6.1. Primary functions .. 127
3.6.2. Opening the Transaction Browser... 127
3.6.3. Submenu Transactions ... 128
3.6.4. Submenu Objects.. 129
3.6.5. Submenu ObjectInstanceVariables... 129
3.6.6. Context / TransactionLevel fields / buttons ... 129
3.6.7. Versioned objects fields / buttons ... 130

Appendix A
API ..131

Appendix B
Glossary ..141

List Of Tables ... 149

List Of Figures .. 151

Index .. 155

Object Behavior Framework User’s Guide
Documentation Overview 9

Documentation Overview

Congratulations
Congratulations on your purchase of PMS Micado Object Behavior Framework (OBF), just one of the pow-
erful performance-enhancing tools from PMS Micado. Your purchase reflects your commitment to high-
quality, cost-effective and rapid object-oriented software development.
Extensive experience in software development for the banking and insurance industries has enabled PMS
Micado to develop a suite of tools that can vastly shorten product development cycles. This User’s Guide
is designed to help you exploit the full potential of one of these tools in the shortest time possible.

Object Behavior Framework User’s Guide (this manual)
Intended audience

The intended audience for this manual includes Smalltalk application developers, database developers,
and project management. The reader should have basic familiarity with the Smalltalk language and pro-
gramming techniques. Basic knowledge of UseCase and Unified Modelling Language is highly recom-
mended.

Sections
The content of this manual is presented in the following sections:
• ‘Copyright and trademarks’ (page 3).
• ‘Table of Contents’ (page 5).
• ‘Documentation Overview’ (page 9). This section.
• ‘Release Notes’ (page 11). Provides important information regarding this release of OBF.
• ‘1. ‘Concepts’ (page 17). Describes OBF concepts. This section is recommended as a good review for

experienced OBF users. Those with limited OBF experience might first do the tutorial in ‘Tutorial’ (page
47), since the tutorial introduces the major concepts with step-by-step programming.

• ‘2. ‘Tutorial’ (page 47). Provides a set of programming examples that demonstrate the major program-
ming concepts and techniques of OBF. The example Smalltalk code in the tutorial is also provided in a
separate file (obf_ex.txt) that can be run from a workspace dialog.

• ‘3. ‘Tools’ (page 107). Describes the OBF development environment tools. A review of the tools used
in the tutorial.

• ‘Appendix A. ‘API’ (page 131). Describes API methods for OBF.
• ts‘Appendix B. ‘Glossary’ (page 141). Includes any special terms used throughout this manual.
• ‘List Of Tables’ (page 149).
• ‘List Of Figures’ (page 151).
• ‘Index’ (page 155).

Recommended sections
For readers with no previous OBF experience
Get first-hand experience with OBF by starting with ‘Tutorial’ (page 47). Refer to ‘Concepts’ (page 17),
‘Tools’ (page 107), and ‘Glossary’ (page 141) as required.
For experienced OBF users
Discover what is new in this version by reading ‘Release Notes’ (page 11).
It is also recommended to read about the new Object Model Browser (OME), which replaces the Object
Net Explorer in this version of the Frameworks (see ‘Object Net Browser (NetBrowser)’ (page 119) for
more details).

Conventions used in this manual
The following conventions are used in this manual.
• A term being used for the first time is bold and italic. For example: Object Network.
• Dialog names and menu entries are displayed in bold, with a forward slash between nested entries. For

example: System Transcript / Tools / Manage Applications.
• Smalltalk code is fixed-width Courier. For example:

ˆself

Object Behavior Framework User’s Guide
Documentation Overview10

Reader comments
Any comments you have concerning this manual can be sent to:

info.micado@notes.compuserve.com

Other manuals
From Mynd (and referenced throughout this manual):
• Frameworks Getting Started Manual (from Mynd).
• Application Framework User’s Guide (from Mynd).
• Persistence Framework User’s Guide (from Mynd).
From IBM:
• IBM Visual Age for Smalltalk manuals.

Training from PMS Micado
This manual is an excellent source of information about OBF. However, if you need to start using OBF
immediately, it is highly recommended to enroll in any one of the many specialized PMS Micado training
courses. PMS Micado provides a wide-range of courses covering Smalltalk programming, object-oriented
analysis, design, methodolgy, and project management.
For more information about training courses, please contact:
b Mynd SoftwareConsult GmbH

Taubenholzweg 1
D-51105 Köln (Cologne, Germany)
Tel. : (+49) (0) 221 - 8029 - 0
FAX : (+49) (0) 221 - 8029 - 999
Email: info@mynd.de
Web: www.mynd.de

Object Behavior Framework User’s Guide
Release Notes 11

Release Notes

Version 5.0
1. VisualAge 5.01 compatibility

Frameworks (including Object Behavior Framework) now run under VisualAge 5.01.

Version 4.0
1. Object Model Explorer

Version 4.0 includes the Object Model Browser (OMB). With the OMB, classes and variables can be cre-
ated, variables typed, and relationships specified and saved in a model (outside of VA). The model, when
ready, can then be saved to VA.
For more information, see:
• ‘ Tutorial’ (page 47).
• ‘3.2. Object Model Browser (OMB)’ (page 110).

Version 3.5
1. Dynamic variable properties definition in the Object Model Explorer

You can dynamically define properties for variables of your classes in the Object Model Explorer. Proper-
ties are class-based and will be inherited by subclasses. The Object Model Explorer is now the default
model explorer; however, the Object Net Browser is still available.

2. Image size reduction of Runtime Extended Description
The class method #initExtendedDescription: contains all information that the Object Behavior Framework
holds about the class and its typed attributes. (You can enter and modify this information with the Object
Model Explorer or Object Net Browser.)
Some of the information stored in the #initExtendedDescription: method is neccessary during runtime oth-
ers is only used by the framework tools during development time.
The #initExtendedDescription: method is used to lazyly initialize the extended description of a class. The
class's extended description is then kept in a class instance variable named #extendedDescription. When
the #extendedDescription is <nil>, the #initExtendedDescription: method will initialize the extended
description the next time it is accessed. (lazy initialization)
It is possible to instanciate all information stored in the #initExtendedDescription: method or to instanciate
only the information that is relevant for the FW's runtime components. The latter will reduce the size of
your Smalltalk image, but the FW tools cannot operate on extended description's with runtime information
only.
When you have loaded FW tools (e.g. Object Net Browser or Object Model Explorer) into your image, the
#initExtendedDescription: method will instanciate complete information by default. When you have loaded
FW runtime components (no tools, no development configuration maps), then by default the #initExtend-
edDescription: method will instanciate the runtime information only.
To reduce the size of your packaged runtime image, you have several possibilities:
1. You do not care about the contents of the #extendedDescription class variables in the image.
2. You want to minimize the image as good as possible.
3. You want to minimize the image but you also want to have the best performance.
Here is what you can do and what the consequences are:
1. You do not care about the contents of the #extendedDescription class variables in the image.
You just package your runtime image somewhen. The VA-Packager will most likely package the contents
of the #extendedDescription class variables into the runtime image. For those classes, where the variable
is already initialized before packaging, the extended description will also be initialized in the packaged
image. The extended description of other classes will be initialized lazy the first time it is accessed during
runtime of your application.
When you start the VA-Packager from an image, in which FW development components have been
loaded, you might package completely instanciated extended descriptions (including development infor-
mation also) into the runtime application, which increases the size of the runtime more than neccessary.

Object Behavior Framework User’s Guide
Release Notes12

2. You want to minimize the image as good as possible.
The runtime image is smallest, when all #extendedDescriptions are <nil> before packaging.
To archive this:
a. Open the Extended-Description-Conversion tool from your Transcript window:

Menu micFrameworks->Object Behavior Tools->Convert Extended Descriptions...
b. Select the radio button "Remove Extended Descriptions" and press "Start".
c. Close the tool afterwards and package your application.
3. You want to minimize the runtime image but you also want to have the best performance.
You can preinitialize all #extendedDescriptions with the runtime extended description information for all
classes in your image before packaging. The image size relations are:

{all #extendedDescriptions = <nil>}
<

{all #extendedDescriptions = runtime extended descriptions}
<

{ all #extendedDescriptions = complete extended descriptions }

3. Changed API methods
#createExtendedDescription methods must be migrated before using the classes.
- These methods are now development methods (former runtime methods):

MicFwApplicationObject class>>#allKeyAspects
MicFwApplicationObject class>>#setTypeConverter:for:

- Removed methods:
MicFwApplicationObject class>>#hasKey (micInternal, R)
MicFwPersistentObject class>>#removePersistence: (micInternal, D)
MicFwAppliationObject class>>#hasNTo1Relationship (micAPI, D)

4. Tool for migrating #createExtendedDescription methods (required for this release)
Before you can use your classes with the new release, you must migrate (regenerate) all #createExtend-
edDescription methods with a migration tool.
This migration tool generates a new #initExtendedDescription: class method and deletes the former #cre-
ateExtendedDescription class method.
Usage:
Open the migration tool with
Transcript->micFrameworks->Migrate #createExtendedDescription methods
The tool will initialize the extended descriptions from the old method (or from the new method when
already available).
The tool then asks whether you want to migrate the generated method or not.
If you press "no", then no methods will be modified and the extended description objects are initialized so
that you can work with your old classes without the need to migrate the methods before testing your code.
If you press "yes", the tool prompts for applications in which methods should be regenerated.
After selecting the adequate applications and pressing "Choose" all classes for which the #createExtend-
edDescription method needs to be regenerated in the selected applications will be migrated.
Note: Make sure, that you have privileges to modify code in the applications you selected.

Release 3.4 Version 1.0
1. System requirements

System configuration requirements:
• Operating system: IBM OS/2 , Windows 95, Windows 98, Windows NT, AIX.
• Smalltalk development environment: IBM Visual Age for Smalltalk Version 4.x.

2. Hierarchical transaction contexts
The concept of transactions has been extended in this release. A context can now be created as a child of
another (parent) context. A parent context can have any number of child contexts. Any context can be a
parent context.
For details about this new feature refer to:
• ‘1.3.4.7.5. Parent-child contexts’ (page 37). Describes the concept of hierarchical transaction contexts.
• ‘2.21. Multiple contexts: Concurrent’ (page 99). Examples that demonstrate how hierarchical transac-

Object Behavior Framework User’s Guide
Release Notes 13

tion contexts work.

3. Find Redefined Variable Typings
A new menu item appears in this version of OBF. From the System Transcript select "micFrameworks /
Object Behavior Tools / Find Redefined Variable Typings". This will print a list of variables whose types
were redefined in a subclass of the class that originally defined the variable.

4. "Lazy initialize" for relationship accessors
Normally the relationship variables are initialized by the class method initializeRelationshipsFor:.
This can, however, require a significant amount of system resources for objects with many relationships,
especially when these objects are created at one time (such as when objects are loaded from a database).
Therefore, the generation of the initializeRelationshipsFor: method is now optional.
If no initializeRelationshipsFor: method exists, then the relationships are initialized by the generated acces-
sor methods. This type of relationship initialization is referred to as lazy initialization.
Enabling lazy initialization (disabling generation of initializeRelationshipsFor:)
• From the Object Net Browser select Extra / Options. The following dialog appears:

Figure 1: Initialize relationships lazy checkbox

• Check the checkbox initialize relationships lazy.
• Click OK.
Enabling lazy initialization for classes created in previous OBF versions
There are 2 methods for enabling lazy initialization of classes created in previous OBF versions.
Method 1:
• Load classes into the Object Net Browser.
• From the Object Net Browser select Extra / Options.
• Check the checkbox initialize relationships lazy.
• Select Save all.
• Click OK.
Method 2:
• From the Object Net Browser select Extra / Options.
• Check the checkbox initialize relationships lazy.
• Click OK.
• Call the following methods for the classes that required lazy initialization:

• generateCreateExtendedDescriptionMethod
• generateAccessorMethods

Release 3.3 Version 1.3
1. System requirements

System configuration requirements:
• Operating system: IBM OS/2 , Windows 95, Windows NT, AIX.
• Smalltalk development environment: IBM Visual Age for Smalltalk Version 4.x.

2. Regeneration of Basic Accessors
Accessor and #createExtendedDescription methods for typed and persistent classes created with previous
releases (R3.2 V1.3 or earlier) must be regenerated. To regenerate the methods:
1.1. In the Transcript window: Select micFrameworks / Object Behavior Tools / Migrate generated

accessors. OBF scans your image for methods that need to be regenerated. Classes containing
methods that need to be regenerated are displayed.

144

Object Behavior Framework User’s Guide
Release Notes14

1.2. Select all methods (recommended).
1.3. Click OK. The methods are regenerated.
Note: The accessor methods created during regeneration are for internal use within OBF. Do not use
these methods in applications.

Object Behavior Framework User’s Guide
Installing OBF 15

Installing OBF

System requirements
This tutorial assumes that you have the following:
• Windows NT.
• IBM Visual for Smalltalk Version 4.5.
• Mynd Object Behavior Framework V5.0.

Installation Overview
IBM Visual Age Smalltalk (version 4.5 recommended) must be already installed on your computer before
installing OBF.
Installing Frameworks consists of 2 main steps:
• Importing the configuration maps from the library file on the CD ROM (\manager\V50.dat) to the

library file on your computer (typically \vast\mgr50.dat).
• Loading the applications in the imported configuration maps (along with any other required maps) to

your image file (typically \vast\abt.icx).

Importing OBF configuration maps
OBF is installed in your Smalltalk environment by importing the required applications using the Visual Age
Configuration Maps Browser. The applications are imported by importing the configuration maps that con-
tain the Frameworks applications (applications contain the classes and methods).
1. If not started: Start Visual Age for Smalltalk.
2. In the System Transcript: Select Tools / Browse Configuration Maps. The Configuration Maps Browser

opens.
3. In the Configuration Maps Browser: Select Names / Import ("names" refers to the names of configura-

tion maps).
4. In the dialog "Enter the full path name of the library" ("library" refers to the .dat file that contain the con-

figuration maps): Double-click on the OBF library file pfw2232.dat (on the CD ROM).
5. In the "Selection required" dialog in the "Name" box: Click on micFrameworksBaseDevelopment (a

configuration map).
6. A version number ("V5.0") appears in the "Versions" box. Click on the version.
7. Click on the ">>" button. "micFrameWorksBase Development V5.0" has now been selected as a con-

figuration map to import and appears in the "Selected Versions" box.
8. Import the configuration map "micFrameworksBase Runtime".
9. Import the configuration map "micObjectBehaviorFramework Development".
10. Import the configuration map "micObjectBehaviorFramework Runtime".
11. Select "OK".
The above 4 configuration maps and their applications are imported to your library.The message "Finished
importing from (OBF library file)" appears in the System Transcript. The configuraton maps are displayed
and highlighted in the "Names" box of the Configuration Maps Browser.

Loading OBF configuration maps
A configuration map can sometimes only be loaded after other configuration maps that the first configura-
tion map requires are loaded. Visual Age will automatically load any required maps. In this case micObject-
BehaviorFrameworkDevelopment requires micObjectBehaviorFrameworkRuntime and
micFrameworksBase Development, each of which requires micFrameworksBase Runtime. Therefore,
loading micObjectBehaviorFrameworkDevelopment will cause all required maps to be loaded.
12. In the Configuration Maps Browser: Select "micObjectBehaviorFramework Development".
13. In the "Editions and Versions" box: The edition and version codes appear. The applications and requi-

res maps for the selected map are also displayed. Right click on the latest edition and version.
14. Select "Load with required maps". All of the required maps are loaded (detailed information appears in

the System Transcript).
15. Close the Configuration Maps Browser.

Object Behavior Framework User’s Guide
Installing OBF16

OBF tools available from micFrameworks menu
OBF has now been loaded into your IBM Visual Age Smalltalk environment. In the System Transcript the
menu bar selection "micFrameworks" appears. The submenu selections include the following OBF func-
tions:
• Browse Log (open Framework Logger).
• Browse Transactions (open Transaction Browser).
• Browse Object Net... (open Object Net Browser).
• Object Behavior Tools (utilities for OBF).
• About micFrameworks... (version and contact information)

Object Behavior Framework User’s Guide
1. Concepts

17

1
Concepts

Object Behavior Framework User’s Guide
1. Concepts

18

Object Behavior Framework User’s Guide
1. Concepts

1.1. What is OBF? 19

1.1. What is OBF?
OBF stands for "Object Behavior Framework". OBF is a library of classes that when added to your Small-
talk development that provide the ability to define the requirements and restrictions for object behavior
using a framework.
OBF functionality is required by the 2 other frameworks:
• Persistence Framework (PFW), which provides a framework for integrating objects and databases.
• Application Framework (AFW), which provides a framework for integrating objects and applications.

1.1.1. Object behavior
1.1.1.1. Implementation of object behavior in Frameworks

OBF provides the ability to control object behavior by creating special accessor methods for an object’s
variables.

1.1.1.1.1. Standard accessor methods
When a standard accessor method (a getter or setter) is sent to an object (the source object), the follow-
ing occurs:
• In response to a getter message: The source object will return a reference to the target object refer-

enced by the source object variable.
• In response to a setter message: The source object variable will be changed to reference the target

object referenced in the setter message.

1.1.1.1.2. Special accessor methods
The special accessor methods created by OBF provide the following functionality.
1.1.1.1.2.1. Instance variable typing

Instance variable typing restricts the class of the target object to a standard Smalltalk class (or one of its
subclasses).
Variable typing is described in detail in ‘1.2. Variable types / relationships’ (page 21).
1.1.1.1.2.2. Object Relationships
An Object relationship is to some extent similar to variable typing, in that it restricts the class of the target
object. However, the target object class is not a standard Smalltalk class, but rather a user-defined class.
The user-defined class can be modified, which allows relationships between the source and target objects
to be defined.
Relationships are described in detail in ‘1.2. Variable types / relationships’ (page 21).
1.1.1.1.2.3. Transactions
Transactions provide a method of transacting changes to a variable. A source variable always references
2 target objects: a committed target and an uncommitted target. When a new target object is assigned
to a transacted variable (while an active context exists), the target object becomes the uncommitted tar-
get of the variable. Thus, the process of assigning a new object to a variable is transacted. This is imple-
mented in the setter method for the variable. The getter method for a variable can return either the
committed or uncommitted target object, depending on the context in which the getter message was sent.
Transactions are described in detail in ‘1.3. Transactions’ (page 27).

1.1.1.2. Applications of object behavior
The ability to control object behavior has the following applications.

1.1.1.2.1. Instance variable typing
By restricting the type of object referenced by a variable, the object can easily be made persistent (stored
in a database).
This and other applications of variable typing are described in detail in ‘1.2. Variable types / relationships’
(page 21).

1.1.1.2.2. Object relationships
Object relationships can be used to model the relationships between the real-world objects in a systematic
and controlled fashion. The interrelationships between objects (objects reference each other through vari-
ables) creates an object net. The object net can be mapped to database tables, providing a persistent
representation of the object net.
This and other applications of object relationships are described in detail in ‘1.2. Variable types / relation-
ships’ (page 21).

Object Behavior Framework User’s Guide
1. Concepts
1.1. What is OBF?20

1.1.1.2.3. Transactions
Transactions can be used to control input from a user dialog. For example, all changes in the dialog can be
transacted. If the "OK" button in the dialog is clicked, then the transacted changes can be committed. If
the "CANCEL" button in the dialog is click, then the transacted changes can be aborted.
Transactions can also reduce the number of changes to databases and can handle such problems as con-
current access in the Smalltalk environment, freeing the database from such tasks.
This and other applications of transactions are described in detail in ‘1.3. Transactions’ (page 27).

1.1.2. Framework
OBF provides a framework that automates much of the work involved in implementing the OBF functional-
ity described above.

1.1.2.1. OBF Tools
OBF provides a variety of tools for specifying and monitoring OBF functionality. These tools are described
in ‘ Tools’ (page 107) and include the following.

1.1.2.1.1. Object Model Browser
The Object Model Browser (OMB) is used to create an object model. An object model is a specification
of object nets / classes and the variables for these nets / classes. An object model can be created within
the OMB without actually creating anything in the Smalltalk image. Thus incomplete object nets can be
created without creating errors in the Smalltalk image. The Framework aspects (variable typing, relation-
ships) of the contents of the object model, when considered complete, can be tested by the OMB without
having been saved to the Smalltalk environment. If no errors are detected, then the model contents can be
saved to the Smalltalk image.
OMB provides the complete functionality previously provided by the Object Net Browser / Type Editor /
Relationship Editor (these tools are still available).
OMB is described in detail in ‘3.2. Object Model Browser (OMB)’ (page 110).

1.1.2.1.2. Object Net Browser
The Object Net Browser (ONB) is used to create an object net.
Note: It is recommended to use the Object Model Browser instead of ONB.
ONB is described in detail in ‘3.3. Object Net Browser (NetBrowser)’ (page 119).

1.1.2.1.3. Type Editor
The Type Editor (TE) is used to specify the type of an instance variable.
Note: It is recommended to use the Object Model Browser instead of TE.
TE is described in detail in ‘3.4. Type Editor’ (page 124).

1.1.2.1.4. Relationship Editor
A Relationship Editor (RE) is used to specify the relationships between objects.
Note: It is recommended to use the Object Model Browser instead of RE.
RE is described in detail in ‘3.5. Relationship Editor’ (page 125).

1.1.2.1.5. Transaction Browser
The Transaction Browser (TB) is used to view or modify transactions.
TB is described in detail in ‘3.6. Transaction Browser’ (page 127).

Object Behavior Framework User’s Guide
1. Concepts

1.2. Variable types / relationships 21

1.2. Variable types / relationships
This chapter describes the concepts related to variable types and relationships.

1.2.1. What are variable types / relationships
1.2.1.1. Variable types

A variable type defines the allowable class (or subclasses) that can be assigned to an object. Available
types include standard types (Integer, Date, String, etc.) and user-defined classes.

1.2.1.2. Relationships
A Relationship is established between a Source object and a Target object when a Source object vari-
able type is the Target object and the Target object is a modifiable object (ie, not standard object types
such as Integer, Date, etc.).

1.2.1.2.1. 1-way relationships
A relationship is a 1-way relationship when the 1-way relationship between a source object and 1 or more
target objects is specified in entirety by a single source object variable.
Example
A 1-way relationship is specified between a Person object (source) and a PersonName object (target) by
variabe Person>>name, which can reference a single PersonName object.
Example
A 1-way relationship is specified between a Person object (source) and an Address object (target) by vari-
able Person>>addresses, which can reference multiple Address objects.

1.2.1.2.2. 2-way relationships
A relationship is a 2-way relationship when the 2-way relationship between a source object and and a tar-
get object is specified by a single source object variable and a single target object variable.
Example
A 2-way relationship is specified between a Employee object (source) and a Customer object (target) by:
• Variable Employee>>ownedCustomers, which can reference multiple Customer object.
• Variable Customer>>ownerEmployee, which can reference a single Employee object.

1.2.2. Why variable types / relationships are not supported by Smalltalk
1.2.2.1. Variable types

In typed languages such as Java, every variable must be defined as having a single type. For example:
int integerVariable;
float floatingPointVariable;

Type checking is carried out during compilation.
Smalltalk does not provide variable typing. A variable can reference any object. This supports 2 important
concepts in OOP:
• Run-time binding of messages to methods.
• Polymorphism.

1.2.2.1.1. Run-time binding of messages to methods
Run-time binding refers to the way in which the method referenced by a message is determined during
run-time. This is a fundamental difference between OOP and procedural languages. Procedural languages
use static binding, which binds a procedure and to a procedure call compilation.

1.2.2.1.2. Polymorphism
Polymorphism means that the same message can be sent to more than 1 class of object, and thus the
method implemented in response to the message can be different for each class of object that the mes-
sage is sent to. The message is polymorphic, in that this same message means different things to different
classes of objects.
With polymorphism and no variable typing, a single statement can send the same message to different
objects.
Example
aPerson personalInformation.

The class of object returned in response to the message personalInformation depends on the object that

Object Behavior Framework User’s Guide
1. Concepts
1.2. Variable types / relationships22

the message was sent to. For example, a Customer object (Customer is a subclass of Person) in response
to the personalInformation message might return a different class of object than an Employee object
(Employee is a subclass of Person). The Employee object might return an object with much more detailed
personal information than the object returned by the Customer object.

1.2.2.2. Relationships
Relationships provide the ability to work with objects stored in databases as linked tables. Smalltalk pro-
vides no support for relationships.

1.2.3. Why variable types / relationships are supported by OBF
1.2.3.1. Variable types

OBF typing provides the following:
• Predictable object behavior
• Unrecognized message avoidance
• External software component integration
• Database interface

1.2.3.1.1. Predictable Object Behavior
A Smalltalk program consists of objects sending messages to other objects and receiving back a reference
to an object. Therefore, controlling the behavior of an object means controlling what kind of objects the
object’s variables can reference.
Smalltalk variables are not directly accessible. An accessor message must be sent to an object that speci-
fies a new object that an object’s variable should reference.
Example
Assume that PersonName>>firstName should reference a string object (the person’s first name). Other
objects can change the object referenced by PersonName>>firstName with the following message:

aPersonNameObject firstName: ’John’.

Typically PersonName>>firstName: would be similar to the following:
PersonName>>firstName: aString

firstName := aString.

The unpredictability in object behavior arises since aString could reference any type of object.

1.2.3.1.2. Unrecognized message avoidance
A message should normally be sent only to a certain class and its subclasses. For example, the message
getPersonalInformation should only be sent to an instance of class Person or its subclasses. OBF provides
a design-time framework and run-time type verification to avoid unrecognized messages.

1.2.3.1.3. External software component integration
Typing in software components integrated with a Smalltalk application must be maintained. For example,
many kinds of drivers (for example, C or C++ libraries) are written in a language that supports static type
checking. And Java is a strongly typed language.

1.2.3.1.4. Database interface
Databases require stringent data typing. A Smalltalk program that accesses a database must ensure that
the proper type of object is written to a database. The wrong type of object could cause a low-level fatal
error.
Example

aPersonNameObject firstName: 123.
aPersonNameObject firstName writeToDatabase.

If the database is expecting a string object, an error would be generated.

1.2.3.2. Relationships
OBF relationships allow rows in linked tables in a database to be loaded as objects. The table relationships
are represented by object relationships. The object relationships verified and maintained by OBF allow the
objects to be loaded and stored to the database seemlessly, avoiding such problems as invalid column
types and concurrent access violations.
This OBF functionality is use by PFW, an advanced tool that provides extensive support of object persis-
tence (storage of objects in relational databases).

1.2.4. How variable types / relationships are implemented by OBF

Object Behavior Framework User’s Guide
1. Concepts

1.2. Variable types / relationships 23

1.2.4.1. Tools
Simple types and relationships are established using the the Relationship Editor (described in detail in ‘3.5.
Relationship Editor’ (page 125)).

1.2.4.2. Accessors
Types and relationships are verified during program execution with the accessor classes and methods
generated by the Relationship Editor.
Example
The following accessors are typical for a variable with a simple type:
• Getter:

PersonName>>firstName
^self readAccessTo: #firstName currentValue: firstName.

• Setter:
PersonName>>firstName: anObject

^self writeAccessTo: #firstName newValue: anObject currentValue: first-
Name.

Thus, sending a getter or setter message to an object does not immediate change the object referenced by
the variable. The setter writeAccessTo:newValue:currentValue: message is sent to the object. The imple-
mentor of the method for that message has been created automatically by OBF when specifying the
instance variable type using OBF tools.
The accessor methods for simple types and all relationships are described in more detail in ‘ Tutorial’
(page 47).

1.2.4.3. Description objects
OBF creates for every class that has a typed variable the class method createdExtendedDescription.
This method is used to create an MicFwExtendedDescription object that describes the typed variables in
a class. This object has the following structure:

MicFwExtendedDescription
MicFwInstanceVariableDescription

MicFwTypeDescription
MicFwRelationshipDescription

The MicFwExtendedDescription object references a MicFwInstanceVariableDescription object for each
typed variable in the class. This MicFwInstanceVariableDescription references either a MicFwTypeDe-
scription (simple types) or a MicFwRelationshipDescription (relationship type). The MicFwRelation-
shipDescription object contains complete information about the relationship between 2 classes (classes,
variables, cardinality, etc.).
Description objects are described via examples in ‘ Tutorial’ (page 47).

1.2.4.4. Type: Standard
Standard types are used when the allowed objects referenced by a variable should be limited to a standard
Smalltalk type (ie, Integer, Date, String, etc.).

Figure 1.2.1. Standard type

Example
A standard type is demonstrated in the tutorial by specifying the type of Person>>dateOfBirth as a Date
object.

Figure 1.2.2. Standard type example

1.2.4.5. Relationships: ->1 (primitive 1-way)
->1 relationships are used when the allowed objects referenced by a variable should be limited to single

Source object

variable (type Target)

Target object

Person instance

dateOfBirth (type Date)

Date instance

Object Behavior Framework User’s Guide
1. Concepts
1.2. Variable types / relationships24

instances of a class (or subclasses) that was created within the Framework.

Figure 1.2.3. ->1 (primitive) relationship

1.2.4.6. Cardinality
The cardinality of a relationship refer to the allowed number of target objects that each variable can refer-
ence. For a ->1 relationship the cardinality is always 0..1 ("0" indicates that the variable can point to nil).
Example
A ->1 relationship is demonstrated in the tutorial by specifying the type of Person>>name as a Person-
Name instance.

Figure 1.2.4. ->1 (primitive) relationship example

A reference to a PersonName object (or nil) would be returned in response to the "name" getter message
to a Person object.

1.2.4.7. Relationships: ->N (primitive 1-way)
->N relationships are used when the allowed object referenced by a variable should be limited to a collec-
tion of N instances of a class (and it’s subclasses) that was created within the Framework, where N speci-
fies the allowed number of target objects in the set and min<N<max (the cardinality of the relationship is
min..max).

Figure 1.2.5. ->N (primitive) relationship

Example
A ->N relationship is demonstrated in the tutorial by specifying the type of Person>>addresses as a set of
1..3 Address objects.

Figure 1.2.6. ->N (primitive) relationship example

A reference to a collection of Address objects would be returned in response to the "address" getter mes-
sage to a Person object.

1.2.4.8. Relationships: 1<->1
1<->1 relationships are used when:
• The allowed objects referenced by the Source variable should be limited to single instances of the Tar-

get class (or it’s subclasses) that was created within the Framework
• The allowed objects referenced by the Target variable should be limited to single instances of the

Source object

variable (type Target)

Target object

Person instance

name (type PersonName)

PersonName instance

Source object

variable
(type: Set of Target objects)

min..max

Set of min..max target objects

Target object

Person instance

addresses
(type: set of Address objects)

1..3

Set of 1..3 Address objects

Address object

Object Behavior Framework User’s Guide
1. Concepts

1.2. Variable types / relationships 25

Source class (and it’s subclasses) that was created within the Framework.

Figure 1.2.7. 1<->1 relationship

Example
A 1<->1 relationship is demonstrated in the tutorial by specifying:
• The type of Customer>>portfolio as a Portfolio instance.
• The type of Portfolio>>customer as a Customer instance.

Figure 1.2.8. 1<->1 relationship example

1.2.4.9. Relationships: 1<->N
1<->N relationships are used when:
• The allowed objects referenced by a Source variable should be limited to a collection of instances of a

Target class (or it’s subclasses) that was created within the Framework, where N specifies the allow-
able number of target object in the set and min<N<max (the cardinality of the relationship is min..max).

• The allowed objects referenced by a Target variable should be limited to single instances of a Source
class (or it’s subclasses) that was created within the Framework.

Figure 1.2.9. 1<->N relationship

Example
A 1<->N relationship is demonstrated in the tutorial by specifying:
• The type of Employee>>ownedCustomers as a set of 1..3 Customer objects.
• The type of Customer>>ownerEmployee as a single Employee instance.

Figure 1.2.10. 1<->N relationship example

1.2.4.10. Relationships: M<->N
M<->N relationships are used when:
• The allowed objects referenced by a Source variable should be limited to a collection of instances of a

Target class (or it’s subclasses) that was created within the Framework, where N specifies the allow-
able number of target objects in the collection and min<N<max (the N cardinality of the relationship is
min..max).

Source object

variable (type Target)

Target object
1

1
variable (type Source)

Customer instance

portfolio (type Portfolio)

Portfolio instance
1

1
customer (type Customer)

1
variable (type Source)

1
variable (type Source)

Source object

variable
(type: Set ofTarget objects)

min..max

Set of min..max target objects

Target object

1
variable (type Source)

1
variable (type Source)

1
variable (type Source)

Employee instance

ownedCustomers
(type: Set of Customer instances)

1..3

Set of 1..3 Customer objects

Customer instance

1
ownerEmployee (type Employee)

Object Behavior Framework User’s Guide
1. Concepts
1.2. Variable types / relationships26

• The allowed objects referenced by a Target variable should be limited to a collection of instances of the
Source class (or it’s subclasses) that was created within the Framework, where M specifies the allow-
able number of source objects in the collection and min<M<max (the M cardinality of the relationship is
min..max).

Note: All of the Target objects in the collection referenced by a Source variable are unique (not the same
objects). All of the Source objects in the collection referenced by a Target variable are unique (not the
same objects).

Figure 1.2.11. M<->N relationship

Example
An M<->N relationship is demonstrated in the tutorial by specifying:
• The type of Person>>addresses is a collection of 1..2 Address objects.
• The type of Address>>persons is a collection of 1..2 Person objects.

Figure 1.2.12. M<->N relationship example

Source object

min..max

variable
(type: Set ofTarget objects)

Set of min..max target objects

variable
(type: Set of Source objects)

Source object
variable
(type: Set ofTarget objects)

Target object

Target object
variable
(type: Set of Source objects)

Set of min..max target objects
Set of min..max source objects

Set of min..max source objects

min..max

min..max

min..max

Person instance

1..

variable addresses
(type: Set of Address objects)

Set of 1.. Address objects

variable persons
(type: Set of Person objects)

Person instance
variable addresses
(type: Set of Address objects)

Address instance

Address instance
variable persons
(type: Set of Person objects)

Set of 1.. Address objects
Set of 1..10 Person objects

Set of 1..10 Person objects

1..10

1..

1..10

Object Behavior Framework User’s Guide
1. Concepts

1.3. Transactions 27

1.3. Transactions
This chapter describes the basic concepts of transactions as implemented in OBF.

1.3.1. What are transactions
A transaction groups together several consecutive actions as though they were a single action. This
enables a group of transacted changes which occurred over a given period of time to be either imple-
mented (committed) or aborted at a single instance in time. Thus any inconsistent state that could arise
from committing only a portion of a group of commands can be avoided.
Bank account example
Assume that DM500 is to be tranferred from account A to account B. This single transaction actually con-
sists of several consecutive actions:
• From T1 to T2: Debit DM500 from account A.
• From T2 to T3: Credit DM500 to account B.
This is shown in the following diagram:

Figure 1.3.1. Debitting account A and creditting account B

If the changes are transacted, then any changes that occurred between T1 and T3 could be aborted in the
event that an error occurs (or in the event that it is decided to NOT transfer the money after all).
If no error occurred, then the changes would be committed at time T3.

1.3.2. Why are transactions not supported in Smalltalk
Transactions are not part of the OOP paradigm of Smalltalk.

1.3.3. Why are transactions supported by OBF
Transactions are supported by OBF for the following reasons:
• Changes to a variable can be transacted rather than actually being implemented. This can be very con-

venient, for example, when changes are being made in a dialog. The changes in the dialog could be
easily committed / aborted when the "OK" / "CANCEL" button is clicked. And other dialogs displaying
some of the same data could display the data with the latest changes or only the changes that have
been committed. For this reason, OBF transactions are an important building block for the AFW.

• Concurrent references to a variable can be managed by the OBF transaction manager, avoiding con-
currency problems with database access. This is implemented by using multiple transaction contexts.
Only 1 context can be active at any time, and only 1 context can have a lock on a variable. Thus, a
variable can only be modified if the context that has a lock on the variable is the single active context.
For this reason, OBF transactions are an important building block for the PFW.

Other uses for the transaction mechanisms are described in later in this chapter.
Bank account example
For the above situation, with OBF transaction support, we could have 3 dialogs open that display the
account balance for account A.
• Dialog 1 is the dialog where the transfer was initiated.
• Dialog 2 displays the account balance for account A with any pending (uncommitted changes).
• Dialog 3 displays the account balance for account A without pending changes (ie, only committed

changes are displayed.
Dialogs 1, 2, and 3 could be assigned to separate processes.
Now if we assumed that the account A balance is persistent (ie, stored in a database), then if a 4th pro-
cess attempted to changed the balance of account A in the databank, a transaction write conflict would
be generated.
Assume that a 5th process reads the balance of Account A from the database. According to the settings of
the context for process 5, the actual value from the databank could be returned, or the current uncommit-

Debit DM500 from account A Credit DM500 to account B

T1 T2 T3

time

Object Behavior Framework User’s Guide
1. Concepts
1.3. Transactions28

ted (ie, - DM 500) value.

1.3.4. How transactions are implemented by OBF
1.3.4.1. Tools

1.3.4.1.1. Object Net Browser
If changes to a variable need to be transacted, then the variable must be designated as a transacted vari-
able using the OMB (see ‘3.2. Object Model Browser (OMB)’ (page 110) or the ONB (see ‘3.3. Object
Net Browser (NetBrowser)’ (page 119)). The OMB/ONB will create the variable accessors for implement-
ing transaction support for the variable.
Important: If a variable is not designated as transacted in the OMB/ONB, the variable’s accessors will not
support transactions.

1.3.4.1.2. Transaction Browser
Any current transactions can be managed using the TB (see ‘3.6. Transaction Browser’ (page 127)).

1.3.4.2. Accessors
Transaction of changes to variables is implemented during program execution via the accessor methods
generated for the variable.
Code example
The following accessors are typical for a variable with basic transactions:
• Getter:

PersonName>>firstName
^self transactedReadAccessTo: #firstName currentValue: firstName.

• Setter:
PersonName>>firstName: anObject

^self transactedWriteAccessTo: #firstName newValue: anObject cur-
rentValue: firstName.

1.3.4.3. Object versions (committed, uncommitted targets)
A object version is created (or updated if it already exists) when a new object is assigned to an object’s
transacted variable. The object version contains:
• A reference to the committed target object referenced by the variable. "committed" refers to the object

that the variable will reference if all transacted changes to the variable are aborted.
• A reference to the last uncommitted target object assigned to the variable. "uncommitted" refers to the

last target object that was assigned to the variable during the current active transaction level
(described later in this section).

Code example
For example, suppose the following code was executed while no transaction context was active:

sourceObject var1: ’version1’.

Then a transaction context was activated that has no object version for sourceObject>>var1. Then the fol-
lowing code was executed:

sourceObject var1: ’version2’.

This would result in the following object version:

Figure 1.3.2. Newly created object version

Then the following code was executed:
sourceObject var1: ’version3’.

This would result in the following object version:

object version
for sourceObject>>var1
committed target = 'version1'
uncommitted target= 'version2'

object version
for sourceObject>>var1
committed target = 'version1'
uncommitted target= 'version3'

Object Behavior Framework User’s Guide
1. Concepts

1.3. Transactions 29

Figure 1.3.3. Object version with new uncommitted target

Note that the target object ’version2’ is no longer referenced (at least by this object version).
Dialog example
A object version could be used to record the changes to a field in a dialog. The field could be used to enter
a string object that is assigned to the lastName variable of a Person object. Normally the transaction con-
text would be started when the dialog is opened; the transaction context would be committed if the OK but-
ton in the dialog is clicked, or aborted if the Cancel button is clicked.
This is demonstrated in the following diagram:

Figure 1.3.4. Object version in a dialog

Entering or deleting a character in the "Last name" field would cause a new uncommitted target (the string
in the field) to be assigned to the variable lastName of the Person object.
Note: If the dialog contained a second field (such as for the first name), then a separate object version
would be created for the object entered in the second field.

1.3.4.4. Transaction level 1 (TrLevel1)
Transaction level 1 is often referred to as "TrLevel1" (the name used in the TB).
Note: TrLevel1 is always contained within a transaction context. Contexts are examined later in this sec-
tion. TrLevel1 can also contain nested sublevels; sublevels are also examined later in this section.

1.3.4.4.1. Object versions in TrLevel1
TrLevel1 contains 1 object version for each transacted variable (of any source object) that was assigned a
new object while the TrLevel1’s context was active. TrLevel1 can contain any number of object versions.
TrLevel1 example
The following example shows a TrLevel1 containing multiple object versions:

Figure 1.3.5. TrLevel1 with multiple object versions

Bank account example
The following diagram shows how the changes to the balance of bank accounts A and B in the bank
account example could be transacted in a TrLevel1:

Figure 1.3.6. Object versions in TrLevel1 for balances of accounts A and B

In the above diagram, the uncommitted target for the account A balance was created at T1. The uncom-
mitted target for the account B balance was created at T2.
Dialog example
A single transaction level can represent a dialog. Assigning a new target object to a source object variable

Edit personal information for person

Doe

Last name: Object Version

object version
for sourceObject1>>var1
committed target = 'version1'
uncommitted target= 'version3'

object version
for sourceObject2>>var1
committed target = 'version1'
uncommitted target= 'version7'

object version
for sourceObject2>>var2
committed target = 'version1'
uncommitted target= 'version5'

TrLevel1

Object version for
Account A balance
committed target = DM X
uncommitted target = DM (X - 500)

TrLevel1

Object version for
Account B balance
committed target = DM Y
uncommitted target = DM (Y + 500)

Object Behavior Framework User’s Guide
1. Concepts
1.3. Transactions30

(ie, entering a string in a field, etc.) will generate a new or updated object version for that variable.

Figure 1.3.7. Transaction level with multiple object versions: Example dialog

Separate object versions will be created for both lastName and age.

1.3.4.4.2. Aborting TrLevel1 (aborting context)
The best thing about a TrLevel is that the changes in it can be aborted.
A TrLevel is aborted in order to abort all transacted changes that are recorded in the TrLevel’s Object ver-
sions.
Aborting TrLevel1 would cause the following:
• The object versions would be dereferenced.
• The context would be aborted (explained later in this section).
• The getters for the variable would return a reference to only the actual target.
This is shown in the following diagram:

Figure 1.3.8. Aborting TrLevel1

Bank account example
Assume that in the bank account example someone decided to abort the transfer of money (before T3).
TrLevel1 would be aborted, and the object versions would be dereferenced. No transfer of money would
occur.
As shown in the following diagram, at time T3 the transaction should be committed or aborted, since all
actions involved in the transactions have been finished:

Figure 1.3.9. Bank account example: Aborting changes in TrLevel1 before T3

Dialog example
A typical scenario where a TrLevel is aborted is clicking the "Cancel" button in a dialog.

Figure 1.3.10. Aborting a TrLevel: Example dialog

1.3.4.4.3. Committing TrLevel1
Note: The words "committing" and "committed" are spelled with 1 "t" in the OBF methods ("commited" and
"commiting").
TrLevel1 is committed in order to commit all transacted changes that are recorded in the TrLevel’s Object

Edit personal information for person #37

Doe

Last name:

33

Age:

Object Version

Object Version

TrLevel

Context1
TrLevel1
Object Version
for sourceObject1>>var1
committed target = 'version1'
uncommitted target= 'version2'X

T1 T3time

TrLevel1 created TrLevel1 aborted

T2

Dialog for changing a variable

Cancel

Object Behavior Framework User’s Guide
1. Concepts

1.3. Transactions 31

versions.
Committing TrLevel1 would cause the following:
• The uncommitted targets in the object versions in the TrLevel1 would become the committed targets.
• The object versions would be dereferenced.
• The context would be aborted (explained later in this section).
• The getters for the variable would return a reference to only the actual object (the newly committed tar-

gets).
This is illustrated in the following diagram:

Figure 1.3.11. Committing TrLevel1

Bank account example
Assume that in the bank account example it was decided that the transfer should go through. The following
diagram shows what would happen (assuming that the final button for implementing the transfer was
clicked at T3:

Figure 1.3.12. Bank account example: Committing changes in TrLevel1 at T3

Dialog example
A typical scenario where a TrLevel is committed is clicking the "OK" button in a dialog.

Figure 1.3.13. Committing a TrLevel: Example dialog

1.3.4.5. Nested transaction levels
TrLevel1 can contain a nested TrLevel2, which itself can contain a nested TrLevel3, and so on. This is
shown in the following diagram:

Figure 1.3.14. Nested TrLevels

TrLevel1 is the first TrLevel created.
The highest TrLevel is always the active TrLevel. If a new target object is assigned to a source object
transacted variable, then a object version is created (if non-existent) or modified in the highest TrLevel.
Nested TrLevel Example
If TrLevel2 is the highest TrLevel and a new target object is assigned to a variable, the object version will
be updated or created in TrLevel2.
The following diagram shows what would happen if no object version existed in TrLevel1 and a change

context1X
TrLevel1

Object Version
for sourceObject1>>var1
committed target = 'version1'
uncommitted target= 'version2'

Object Versiont
for sourceObject1>>var2
committed target = 'version1'
uncommitted target= 'version2'

sourceObject>>var1
target = 'version2'

sourceObject>>var1
target = 'version2'

X

X X

T1 T3time

TrLevel1 created TrLevel1 committed

T2

Dialog for changing a variable

OK

TrLevel1

TrLevel3

TrLevel2

Object Behavior Framework User’s Guide
1. Concepts
1.3. Transactions32

was made in TrLevel2:

Figure 1.3.15. Object version in TrLevel2

Dialog example
A typical application of nested TrLevels are subdialogs. Before opening a subdialog, a new TrLevel is cre-
ated. The object versions for the variables assigned new target objects in the subdialog will belong to the
new TrLevel.
This is demonstrated in the following dialog:

Figure 1.3.16. Nested TrLevels: Example dialogs

The new target object for the city variable will be transacted in TrLevel2.

1.3.4.5.1. Aborting the highest TrLevel (not TrLevel1)
Only the highest TrLevel or ALL TrLevels (in a single context) can be aborted.
Aborting the highest TrLevel (which is not TrLevel1) will cause the object versions in the highest TrLevel
and the TrLevel itself to be dereferenced.
TrLevel example
Assume that you have the following nested TrLevels:

Figure 1.3.17. Object versions in TrLevel1 and TrLevel2

TrLevel1

TrLevel2
object version
for sourceObject1>>var1
committed target = 'version1'
uncommitted target= 'version2'

Edit personal information

Edit addresses

TrLevel1

Berlin

City
Edit address

TrLevel2

TrLevel1
Object Version
for sourceObject1>>var1
committed target = 'version1'
uncommitted target= 'version2'

TrLevel2
Object Version
for sourceObject1>>var1
committed target = 'version1'
uncommitted target= 'version3'

Object Behavior Framework User’s Guide
1. Concepts

1.3. Transactions 33

Aborting TrLevel2 would result in the following:

Figure 1.3.18. Aborting TrLevel2

Dialog example
A typical situation where the highest TrLevel is aborted is when the "Cancel" button for a subdialog is
clicked:

Figure 1.3.19. Aborting highest TrLevel by clicking the Cancel button in the lowest subdialog

1.3.4.5.2. Committing the highest TrLevel (not TrLevel1)
Only the highest TrLevel or ALL TrLevels (in a single context) can be committed.
Committing the highest TrLevel (TrLevelN, which is not TrLevel1) will cause the following:
• The object versions in TrLevelN are carried over into TrLevel N-1.
• If a object version exists for the same variable of the same object in both TrLevels: The object version in

TrLevelN-1 is discarded.
TrLevel example
The following diagram demonstrates this:

Figure 1.3.20. Committing the highest TrLevel (not TrLevel1)

Dialog example
A typical situation where the highest TrLevel is committed is when the "OK" button for a subdialog is
clicked:

TrLevel1
Object Version
for sourceObject1>>var1
committed target = 'version1'
uncommitted target= 'version2'

TrLevel2
Object Version
for sourceObject1>>var1
committed target = 'version1'
uncommitted target= 'version3'X

Edit personal information

Edit address

Cancel

TrLevel1
Object Version
for sourceObject1>>var1
committed target = 'version1'
uncommitted target= 'version2'

Object Version
for sourceObject1>>var1
committed target = 'version1'
uncommitted target= 'version3'X

TrLevel2
Object Version
for sourceObject1>>var1
committed target = 'version1'
uncommitted target= 'version3'

X

Edit personal information

Edit address

OK

Object Behavior Framework User’s Guide
1. Concepts
1.3. Transactions34

Figure 1.3.21. Committing highest TrLevel by clicking the OK button in the lowest subdialog

1.3.4.5.3. Aborting all TrLevels (aborting context)
All TrLevels (in a single context) can be aborted (this is equivalent to aborting the context, which is
described later).
Aborting all TrLevels will cause all object versions in all TrLevels to be dereferenced.
TrLevel example
Assume that you have the following nested TrLevels:

Figure 1.3.22. Object versions in TrLevel1 and TrLevel2

Aborting all TrLevels would result in the following:

Figure 1.3.23. Aborting all TrLevels (1 and 2)

1.3.4.5.4. Committing all TrLevels (committing context)
All TrLevels (in a single context) can be committed (this is equivalent to committing the context, which is
described later).
Committing all TrLevels will cause the following:
• The object versions in the highest level are carried over into the second highest level.
• If a object version exists for the same variable of the same object in both of these TrLevels: The object

version in the second highest TrLevel is discarded.
• The highest TrLevel is discarded.
• The above steps are repeated until only TrLevel1 remains.
• TrLevel1 is committed (as described earlier).
TrLevel example

TrLevel1
Object Version
for sourceObject1>>var1
committed target = 'version1'
uncommitted target= 'version2'

TrLevel2
Object Version
for sourceObject1>>var1
committed target = 'version1'
uncommitted target= 'version3'

TrLevel1
Object Version
for sourceObject1>>var1
committed target = 'version1'
uncommitted target= 'version2'

TrLevel2
Object Version
for sourceObject1>>var1
committed target = 'version1'
uncommitted target= 'version3'
X

Object Behavior Framework User’s Guide
1. Concepts

1.3. Transactions 35

The following diagram demonstrates this:

Figure 1.3.24. Committing all TrLevels (1 and 2)

1.3.4.6. Single context
A transaction context is a logical entity designed to contain a single TrLevel1 and any of its sublevels.
TrLevel1 and its sublevels can only exist within a single context. Messages for performing functions with
the highest TrLevel (or all TrLevels) are sent to the TrLevel’s (TrLevels’) context instance.

Figure 1.3.25. Context with TrLevels

1.3.4.6.1. Active context
If the context is active, then any changes to transacted variables will cause an object version for that vari-
able to be updated (if already exists) or created (if doesnt exist) in the highest TrLevel of the active context.

1.3.4.6.2. Running context
The context is running if it has a TrLevel1.

Figure 1.3.26. Running context

Figure 1.3.27. Non-running context

1.3.4.6.3. Aborting context
When a context is aborted:
• All TrLevels in the context are aborted.
• The context is dereferenced.

1.3.4.6.4. Committing context
When the context is committed:
• All TrLevels in the context are committed.
• The context is dereferenced.

1.3.4.7. Multiple contexts

TrLevel1
Object Version
for sourceObject1>>var1
committed target = 'version1'
uncommitted target= 'version2'

Object Version
for sourceObject1>>var1
committed target = 'version1'
uncommitted target= 'version3'X

TrLevel2
Object Version
for sourceObject1>>var1
committed target = 'version1'
uncommitted target= 'version3'

X

sourceObject>>var1
target = 'version3'

X

X

X

Context

TrLevel1TrLevel1TrLevel1TrLevelN

Running Context

TrLevel1

Non-Running Context

(no TrLevel1)

Object Behavior Framework User’s Guide
1. Concepts
1.3. Transactions36

Multiple contexts can exist.

Figure 1.3.28. Multiple contexts

1.3.4.7.1. Active context
Only 1 context can be active at any time. Changes to a transacted variable are transacted within the active
context.

Figure 1.3.29. Single active context in multiple-context environment

Activating a context will deactive the active context (if an already active context exists).
Note: If a context is active and a variable is locked by a non-active context: If a new object is assigned to
the variable: An error occurs. This is explained in ‘1.3.4.7.7.1. Variable lock: Definition’ (page 37).

1.3.4.7.2. Running context
As for a single context environment, in a multiple-context environment a context is running if it has a
TrLevel1. Multiple contexts can be running / non-running simultaneously.

Figure 1.3.30. Running / non-running contexts in multiple-context environment

1.3.4.7.3. Hierarchical contexts
A context can contain other contexts. Such contexts are called hierarchical.

Figure 1.3.31. Hierarchical contexts

Hierarchical contexts can be used for nested dialogs.

Figure 1.3.32. Hierarchical contexts’ dialogs

Differences between using hierarchical contexts or TrLevels in a single context to transact
changes
There are 2 advantages to using hierarchical contexts rather than TrLevels in a single context to transact
changes:
• Hierarchical contexts allow not only multiple levels of nested dialogs, but also multiple dialogs on each

ContextN

TrLevel1TrLevel1TrLevel1TrLevelN

Context1 Context2

TrLevel1 ...

Context
(not active)

Context
(ACTIVE)

Context
(not active)

Context
(not active)

Context
(running)

Context
(not running)

Context
(not running)

Context
(running)

context1

context11 context12

context122context121

(dialog)

context1

context11 context12

(dialog)(dialog)

(dialog)

context121

(dialog)

context122

Object Behavior Framework User’s Guide
1. Concepts

1.3. Transactions 37

level (using TrLevels would allow only 1 dialog on each level).
• Hierarchical contexts allow input in any dialog (using TrLevels would allow input in only the last dialog

opened).

1.3.4.7.4. Non-hierarchical contexts
If contexts do not contain other contexts, then the contexts are non-hierarchical.

Figure 1.3.33. Non-hierarchical contexts

1.3.4.7.5. Parent-child contexts
2 hierarchical contexts can possibly have a parent-child relationship (note: "relationships" is used here as
simply a descriptive term and has nothing to do with the technical term "object relationships"). A child con-
text is contained within the parent context. can be direct or involve several "generations".
For the example hierarchical contexts shown above, the parent child relationships would be the following.

Figure 1.3.34. Parent-child relationships between hierarchical contexts

1.3.4.7.6. Concurrent contexts
2 contexts are said to be concurrent if neither context is contained in the other.

Figure 1.3.35. Concurrent relationships between hierarchical contexts

Note: Non-hierarchical contexts are always concurrent.

1.3.4.7.7. Setting a transacted variable
Setting a transacted variable (using the variable’s setter method to assign a new object to the variable) in a
multiple-context environment is the same as in a single-context environment with one very important differ-
ence: The concept of a variable lock.
1.3.4.7.7.1. Variable lock: Definition
If a context has a variable lock on a variable, then the variable can ONLY be modified in the following 2
situations:

Context1 Context2 Context3

Context1

Context11

Context122Context121

Context12

Parent

Child

Context1

Context11

Context122Context121

Context12 Concurrent

Object Behavior Framework User’s Guide
1. Concepts
1.3. Transactions38

• If the context with the variable lock is active.

Figure 1.3.36. Variable lock: Variable can be changed when context with lock active

• If the context with the variable lock is a non-active parent of the active child.

Figure 1.3.37. Variable lock: Variable can be changed when non-active parent has lock

Note: If a change is made to a variable that is locked by a parent and a child is active, then the lock is
transferred to the child (described below).
1.3.4.7.7.2. Getting a variable lock
There are only 3 situations in which a context can obtain a lock on a variable:
• The context is active, the variable is not locked and the variable is changed (An Object Version for the

variable in the highest TrLevel of the active context is created).
• A child context is active , the variable is locked by a parent context and the variable is changed. The

variable locked is transferred to the child. This is shown in the following diagram:

Figure 1.3.38. Lock of a variable transferred from parent to child context

Note: After the parent has lost the lock to a child, if a change to the variable is attempted while the parent
is active: An exception is thrown.
• A direct child context is committed or aborted. The variable locks within the child context are transferred

to the parent context, as shown in the following diagram:

Figure 1.3.39. Transfer of variable lock from child context to parent context when child committed/aborted

1.3.4.7.7.3. Losing a variable lock
There are only 2 situations in which a context with a varible lock that is not committed/aborted can loose a
lock on a variable:
• The lowest TrLevel (not TrLevel1) in the context that contains an object version for the variable is

aborted.
• The variable lock is transferred to a child context.

1.3.4.7.8. Getting a transacted variable

Context1 (active) Context2

person name: 'new' "no error"

Variable lock for
person>>name

Context1 Context2 (active)

person name: 'new' "error"

Variable lock for
person>>name

Context1 Context12
(active)

person name: 'new' "no error"

Variable lock for
person>>name

context1 sourceObject>>var1 lock

context11
(active)

X

sourceObject var1: 'new' "no error; lock xferred to context11"

sourceObject>>var1 lock

sourceObject>>var1 lock

context11
(aborted or committed)

sourceObject>>var1 lockX
context1

Object Behavior Framework User’s Guide
1. Concepts

1.3. Transactions 39

Getting a transacted variable (using the variable’s getter method) in a multiple-context environment
involves more factors than in a single-context environment. The object returned by a variable getter (the
committed target or the uncommitted target) depends on the following:
• The context isolation (described later) of the active context. The context isolation of each context is

one of the following:
• isolated
• uncommitedRead

• The relationship between the [active context] / [context with the variable lock]. The relationship can one
of the following:
• concurrent / concurrent
• parent / child
• child / parent

This section describes isolated and uncommitedRead contexts and then describes what the variable getter
returns in various situations.
Note: Context isolation is only significant when more than 1 context exists.
1.3.4.7.8.1. isolated context
If the active context is isolated:
• A getter for a variable locked by a non-active concurrent or child context returns the committed tar-

get of the Object Version.
• A getter for a variable locked by a non-active parent context returns the uncommitted target of the

Object Version.
1.3.4.7.8.2. uncommitedRead context
If the active context is uncommitedRead:
• A getter for a variable locked by a non-active context returns the uncommitted target of the Object

Version.
Whether or not a context is uncommitted is not significant when only 1 context exists.
Caution: Note the spelling of "uncommitedRead".
1.3.4.7.8.3. Getting: Variable locked by active
If the variable is locked by the active context, then the committed target will be returned.
1.3.4.7.8.4. Getting: Active = uncommitedRead / Variable locked by non-active concurrent
If the active context is uncommitedRead and the variable is locked by a non-active concurrent context,
then the variable getter returns the uncommitted target from the object version for the variable in [the
highest TrLevel that has an object version for the variable].
Example
context1 has the lock on sourceObject>>var1. context2 is active and uncommitedRead. context1 TrLevel3
is the highest level; however, it contains no object version for the variable. TrLevel2 contains an object ver-
sion.
The getter for sourceObject>>var1 returns the uncommitted target from the object version in context1
TrLevel2.
This is shown in the following diagram:

Figure 1.3.40. Uncommitted target returned when active uncommitedRead and variable locked by non-
active concurrent

1.3.4.7.8.5. Getting: Active = uncommitedRead / Variable locked by non-active parent

context2context1
sourceObject>>var1 lock (activate /

uncommitedRead)

TrLevel3

Object Version
for sourceObject1>>var1
committed target = 'CT'
uncommitted target= 'UT'

TrLevel2

TrLevel1

sourceObject var1. 'UT'

Object Behavior Framework User’s Guide
1. Concepts
1.3. Transactions40

If the variable is locked by a non-active parent context, then the variable getter returns the uncommitted
target from the object version for the variable in [the highest TrLevel that has an object version for the
variable] (the Context Isolation of the active child context has no effect).
Example
This is shown in the following diagram:

Figure 1.3.41. Uncommitted target returned when variable locked by non-active parent

1.3.4.7.8.6. Getting: Active = uncommitedRead / Variable locked by non-active child
If the active context is uncommitedRead and the variable is locked by a non-active child context, then the
variable getter returns the uncommitted target from the object version for the variable in [the highest
TrLevel that has an object version for the variable].
Example
This is shown in the following diagram:

Figure 1.3.42. Uncommitted target returned when active uncommitedRead and variable locked by non-
active child

1.3.4.7.8.7. Getting: Active = Isolated / Variable locked by non-active concurrent
If the active context is isolated and the variable is locked by a non-active concurrent context, then the vari-
able getter returns the committed target from the object version for the variable.
Example
context1 has the lock on sourceObject>>var1. context2 is active and isolated. context1 TrLevel3 is the
highest level; however, it contains no object version for the variable. TrLevel2 contains an object version.
The getter for sourceObject>>var1 returns the committed target from the object version in TrLevel2. This
is shown in the following diagram:

Figure 1.3.43. Committed target returned when active isolated and variable locked by non-active concur-
rent

1.3.4.7.8.8. Getting: Active = Isolated / Variable locked by non-active parent
If the variable is locked by a non-active parent context, then the variable getter returns the uncommitted
target from the object version for the variable in [the highest TrLevel that has an object version for the

context1
context11
(active /
isolated OR uncommitedRead)Object Version

for sourceObject1>>var1
committed target = 'CT'
uncommitted target= 'UT'

sourceObject>>var1 lock

sourceObject var1. 'UT'

context1 context11
sourceObject>>var1 lock(active /

uncommitedRead) Object Version
for sourceObject1>>var1
committed target = 'CT'
uncommitted target= 'UT'

sourceObject var1. 'UT'

context1
sourceObject>>var1 lock

(active /
isolated)

TrLevel3

Object Version
for sourceObject1>>var1
committed target = 'CT'
uncommitted target= 'UT'

TrLevel2

context2 sourceObject var1. 'CT'

Object Behavior Framework User’s Guide
1. Concepts

1.3. Transactions 41

variable] (the Context Isolation of the active child context has no effect).
This is shown in the following diagram:

Figure 1.3.44. Uncommitted target returned when variable locked by non-active parent

1.3.4.7.8.9. Getting: Active = Isolated / Variable locked by non-active child
If the active context is isolated and the variable is locked by a non-active child context, then the variable
getter returns the committed target from the object version for the variable in [the highest TrLevel that
has an object version for the variable].
Example
This is shown in the following diagram:

Figure 1.3.45. Committed target returned when active isolated and variable locked by non-active child

1.3.4.7.9. Aborting a context
Aborting a context in a multi-context environment involves more factors than in a single-context environ-
ment. This is particularly true for parent-child contexts.
1.3.4.7.9.1. Aborting a context with only concurrent relationships to other contexts
Aborting a context that has only concurrent relationships with other contexts has no effect on the other
contexts.
1.3.4.7.9.2. Aborting a context with parent and/or child relationships to other contexts
Aborting a context that has child contexts causes all child contexts of that context to be aborted also.
A variable lock in [the aborted context or a child of the aborted context] is transferred to nearest parent of
the aborted context that has an object version for the variable. If none of the parent contexts of the aborted
context has an object version for the variable, then the lock is removed.
Example
In the following example, context111 is aborted. obj1>>var1 lock is transferred to context11, since
context1 has an ObjectVersion for that variable (the ObjectVersion for obj1>>var1 in context1111 is deref-
erenced). The lock on obj2>>var3 is released, since none of the remaining (after aborting) parents have an
ObjectVersion for the variable..

context1
context11
(active /
isolated OR uncommitedRead)Object Version

for sourceObject1>>var1
committed target = 'CT'
uncommitted target= 'UT'

sourceObject>>var1 lock

sourceObject var1. 'UT'

context11

(active /
isolated)

Object Version
for sourceObject1>>var1
committed target = 'CT'
uncommitted target= 'UT'

context1
sourceObject>>var1 lock

sourceObject var1. 'CT'

context1

Object Version
obj1>>var1

context11

context111

context1111

Object Version
obj1>>var1

obj1>>var1
 lock

Object Version
obj2>>var1

obj2>>var1
 lockX XX

X
X

Object Behavior Framework User’s Guide
1. Concepts
1.3. Transactions42

Figure 1.3.46. Aborting context with parent and child relationships to other contexts

1.3.4.7.10. Committing a context
1.3.4.7.10.1. Committing a context with only concurrent relationships to other contexts
Committing a context that has only concurrent relationships with other contexts has no effect on the other
contexts.
1.3.4.7.10.2. Committting a context with parent and/or child relationships to other contexts
Committing a context that has child contexts causes the following:
• All child contexts of the context are committed.
• The context is committed.
Variable locks and ObjectVersions of the child contexts are transferred to the parent of the committed con-
text.
Example
In the following example, context111 is committed. The following occurrs:
• context1111 is committed.

• The ObjectVersion for obj1>>var1 is moved to context111. The previous ObjectVersion in context111
is dereferenced.

• The obj1>>var1 lock is acquired by context111.
• context1111 is dereferenced.

• context111 is committed.
• The ObjectVersion for obj1>>var1 is moved to context11.
• The obj1>>var1 lock is acquired by context11.
• context111 is dereferenced.

Figure 1.3.47. Committing a context with parent and child relationships to other contexts

1.3.4.7.11. Dialog examples
1.3.4.7.11.1. Concurrent contexts
The following diagram shows 2 dialogs that are accessing the same object (Address with id 37). The
objects referenced by 2 of the variables (cityName and state) of the Address object are shown. Activating
the dialog (by clicking on it) activates the context associated with that dialog.

Figure 1.3.48. Example dialogs for uncommitedRead and isolated contexts

context1

context11

context111

Object Version
obj1>>var1

context1111

Object Version
obj1>>var1

obj1>>var1
 lock

X
X

X

Object Version
obj1>>var1

obj1>>var1
 lock

context2: isolate.context1: uncommitedRead

Edit address #37

Note: Displayed data includes pending
changes from ONLY this dialog.

Edit address #37

City

State

City

State

Note: Displayed data includes pending
changes from any dialog.

Original

OR

Original

OR

Object Behavior Framework User’s Guide
1. Concepts

1.3. Transactions 43

In the next diagram, the right window was clicked, activating context2. The city name was changed. This
locks the cityName variable for the Address object with id 37 to context2. Note that the change is not yet
reflected in the left window, since the changes will only be shown after context1 has been activated.

Figure 1.3.49. Example dialogs: Change in isolated context

In the next diagram, the left window has been clicked on. The new city name from context2 is shown in the
context1 window.

Figure 1.3.50. Example dialogs: Dialog for uncommitedRead context obtains focus

Assigning a different object (such as ’AnotherNewCity’) to cityName in a context other than context2 would
throw a transaction write exception as soon as another context was chosen. You could enter the new city
name in the context1 dialog, but then clicking on the context2 dialog would throw the exception:

Figure 1.3.51. Example dialogs: Attempted change of a variable locked by other context

In the following diagram, state has been changed in context1 to ’NS’. After assigning the new object and

context2: isolate.context1: uncommitedRead

Edit address #37

Note: Displayed data includes pending
changes from ONLY this dialog.

Edit address #37

City

State

City

State

Note: Displayed data includes pending
changes from any dialog.

Original

OR

NewCity

OR

context2: isolate.context1: uncommitedRead

Edit address #37

Note: Displayed data includes pending
changes from ONLY this dialog.

Edit address #37

City

State

City

State

Note: Displayed data includes pending
changes from any dialog.

NewCity

OR

NewCity

OR

context1: uncommitedRead

Edit address #37

City

State

Note: Displayed data includes pending
changes from any dialog.

AnotherNewCity

OR
X

context2: isolate.

Edit address #37

Note: Displayed data includes pending
changes from ONLY this dialog.

City

State

NewCity

OR

Object Behavior Framework User’s Guide
1. Concepts
1.3. Transactions44

clicking on the context2 dialog, the change is not shown in the context2 dialog.

Figure 1.3.52. Example dialogs: Uncommitted change in other dialog is not reflected in the isolated dialog

Finally, the following diagram shows what would happen if context1 was committed and then the context2
dialog was activated: The changes committed in context1 would be shown in the context2 dialog.

Figure 1.3.53. Committed change is shown in isolated dialog

1.3.4.7.11.2. Parent-child contexts
The following diagram shows 3 dialogs. The middle dialog was the first dialog opened and is assigned
context1. The left and right dialogs (context11 and context12) were both opened by clicking the button
"Edit address". context11 and context12 are child contexts of context1. All 3 dialogs have 2 fields for enter-
ing a cityName object and a stateName object for a Person object with id 61. Note that contex1 and
context11 are isolated; context12 is uncommitedRead.

Figure 1.3.54. isolated and commitedRead contexts: Example dialogs.

In the following diagram, cityName in context1 is changed. Note that a getter message sent while a child
context is active to an object (Person with id 61) that is locked to the parent context will always return the
uncommitted target. This is shown in the following diagram (assume that context11 and context12 dialogs

context2: isolate.context1: uncommitedRead

Edit address #37

Note: Displayed data includes pending
changes from ONLY this dialog.

Edit address #37

City

State

City

State

Note: Displayed data includes pending
changes from any dialog.

NewCity

NS

NewCity

OR

context2: isolate.context1: committed (no longer exists)

Edit address #37

Note: Displayed data includes pending
changes from ONLY this dialog.

City

State

NewCity

NS

context1: isolated

Edit person #61

City

State

Actual

AC

Note: Displayed data
includes pending changes
from ONLY this dialog and
any parent dialogs.

Edit address

context11: isolated

Edit person #61

City

State

Actual

AC
Note: Displayed data
includes pending changes
from ONLY this dialog and
any parent dialogs..

context12: uncommitedRead

Edit person #61

City

State

Actual

AC
Note: Displayed data
includes pending changes
from ANY dialog.

Object Behavior Framework User’s Guide
1. Concepts

1.3. Transactions 45

have been activated after the change in context1 dialog):

Figure 1.3.55. Change in the parent context dialog is displayed in the child context dialogs.

In the following diagram, cityName has been changed in context12 dialog. This action removes the lock on
cityName from context1 and gives it to context12. Assume that context1 and context11 dialogs have been
activated once after this. The new cityName object is not shown in either dialog, since the getter message
sent when the dialogs were activated was sent within an isolated context.

Figure 1.3.56. How changes in an uncommitedRead child dialog are displayed in sibling and parent dia-
logs

In the following diagram, state is change in the context11 dialog, causing the lock on state to be taken from
context1 and given to context11. context1 does not show the change since it is isolated. The change is
reflected in context12.

Figure 1.3.57. How changes in an isolated child dialog are displayed in sibling and parent dialogs

The locks on a variable cannot be overtaken by the parent. The only way a parent can get the lock back is
when the dialog is closed (and the child context is committed / aborted). Thus, cityName and state cannot

context1: isolated

Edit person #61

City

State

NewCity

AC

Note: Displayed data
includes pending changes
from ONLY this dialog and
any parent dialogs.

Edit address

context11: isolated

Edit person #61

City

State

NewCity

AC
Note: Displayed data
includes pending changes
from ONLY this dialog and
any parent dialogs..

context12: uncommitedRead

Edit person #61

City

State

NewCity

AC
Note: Displayed data
includes pending changes
from ANY dialog.

context1: isolated

Edit person #61

City

State

NewCity

AC

Note: Displayed data
includes pending changes
from ONLY this dialog and
any parent dialogs.

Edit address

context11: isolated

Edit person #61

City

State

NewCity

AC
Note: Displayed data
includes pending changes
from ONLY this dialog and
any parent dialogs..

context12: uncommitedRead

Edit person #61

City

State

NewCity2

NC
Note: Displayed data
includes pending changes
from ANY dialog.

X
X

context1: isolated

Edit person #61

City

State

NewCity

AC

Note: Displayed data
includes pending changes
from ONLY this dialog and
any parent dialogs.

Edit addressX
context11: isolated

Edit person #61

City

State

NewCity

NS
Note: Displayed data
includes pending changes
from ONLY this dialog and
any parent dialogs..

context12: uncommitedRead

Edit person #61

City

State

NewCity2

NS
Note: Displayed data
includes pending changes
from ANY dialog.

Object Behavior Framework User’s Guide
1. Concepts
1.3. Transactions46

be changed in the context1 dialog. This is shown in the following diagram.

Figure 1.3.58. Variables locked by child contexts cannot be changed in parent context

1.3.4.8. Transaction Manager
The transaction manager manages all contexts. The transaction manager is a single instance of the class
MicFwTransactionManager.

Figure 1.3.59. Transaction manager

context1: isolated

Edit person #61

City

State

NewCity3

NS2

Note: Displayed data
includes pending changes
from ONLY this dialog and
any parent dialogs.

Edit address

X
X

context11: isolated

Edit person #61

City

State

NewCity

NS
Note: Displayed data
includes pending changes
from ONLY this dialog and
any parent dialogs..

context12: uncommitedRead

Edit person #61

City

State

NewCity2

NS
Note: Displayed data
includes pending changes
from ANY dialog.

TransactionManager

context context

context

Object Behavior Framework User’s Guide
2. Tutorial

47

2
Tutorial

Object Behavior Framework User’s Guide
2. Tutorial

48

Object Behavior Framework User’s Guide
2. Tutorial

2.1. Tutorial overview 49

2.1. Tutorial overview
Example is the school of mankind, and they will learn at no other. Edmund Burke
This section of the User Guide presents a step-by-step tutorial for persons with little or no previous OBF
experience (and perhaps limited Smalltalk or object-oriented programming experience). By working
through this tutorial, you will quickly be able to exploit OBF functionality and be able to easily grasp more
advanced OBF concepts introduced later in this User Guide.
The following is an outline of the tutorial. It is highly recommended to work through each step in the tutorial.

Using the example code
• ‘2.2. Using the example code (obf_ex.txt)’ (page 50). Explains how to use the example code pro-

vided in the accompanying obf_ex.txt (OBF Examples) file.

Creating the tutorial application
• ‘2.3. Create ZyxTutorial application’ (page 51). Explains how to create an application with the

required prerequisites.

Models / classes / variables (with OMB)
• ‘2.4. Create new model / class (OMB)’ (page 52). Demonstrates how to create a new model (and cre-

ate a class in the model).
• ‘2.5. Reopen / modify model’ (page 54). Demonstrates how to reopen a model and how to modify a

model.
• ‘2.6. Export model’ (page 55). Demonstrates how a model can be exported to .st and .xml files.
• ‘2.7. Save model to VisualAge’ (page 56). Demonstrates how to "save" the model to VA. Saving

involves actually generating the code in VA for the classes/variables in the model.
• ‘2.8. Classes’ (page 57). Demonstrates the various aspects of creating classes with the OMB.
• ‘2.9. Variables / Framework accessors’ (page 59). Demonstrates how to create variables in OMB.

The names of the accessors can also be modified in the OMB.

Variable typing (non-relationships) (with OMB)
• ‘2.10. Variable typing (Integer) (with manual type validation, manual/automatic type conversion)’

(page 63). Demonstrates how to specify variable typing. Also describes how the type of a variable can
be manually and automatically checked/converted.

• ‘2.11. Variable typing (Date)’ (page 67). A second example of variable typing.
• ‘2.12. Persistent / Key variables’ (page 69). Explains the persistent and key properties of a variable.

Such aspects of variable typing are important for persistence.

Relationships / Class nets (with OMB)
• ‘2.13. ->1 relationship’ (page 71). Demonstrates how to create a simple ->1 relationship. Analyzes the

significance of such relationships for object persistence.
• ‘2.14. Adding class nets to the model’ (page 75). Class nets can be added to a model. What com-

prises a class net and how to add to the model is explained in this chapter.
• ‘2.15. ->N relationship’ (page 77). Demonstrates how to create a simple ->N relationship. Analyzes

the significance of such relationships for object persistence.
• ‘2.16. 1<->1 relationship’ (page 81). Demonstrates how to create a simple 1<->1 relationship. Ana-

lyzes the significance of such relationships for object persistence.
• ‘2.17. 1<->N relationship’ (page 83). Demonstrates how to create a simple 1<->N relationship. Ana-

lyzes the significance of such relationships for object persistence.
• ‘2.18. M<->N relationship’ (page 85). Demonstrates how to create a simple M<->N relationship. Ana-

lyzes the significance of such relationships for object persistence.

Transactions (with TB)
• ‘2.19. 1 context: 1 (non-nested) TrLevel’ (page 88). The most simple transaction example involves a

context with 1 transaction level. Many basic transaction concepts are introduced in this chapter.
• ‘2.20. 1 context: Multiple (nested) TrLevels’ (page 94). A context can have nested transaction levels.
• ‘2.21. Multiple contexts: Concurrent’ (page 99). Multiple context can exists simultaneously.
• ‘2.22. Multiple contexts: Parent / Child’ (page 102). Contexts can be nested. Such contexts are

known as hierarchical contexts and are explored in this chapter.

Object Behavior Framework User’s Guide
2. Tutorial
2.2. Using the example code (obf_ex.txt)50

2.2. Using the example code (obf_ex.txt)

2.2.1. Example code in this User Guide
Example code is displayed throughout this document in courier fixed-width character format:
OBF CH 3.1. Working with transaction contexts."

[
Smalltalk at: #ZyxContext put: MicFwTransactionManager newContext.

]

2.2.2. Executing example code in obf_ex.txt
If the code block is marked with the text "OBF CH (#)" (Object Behavior Framework User’s Guide Chapter
#), then the block is included in the file obf_ex.txt (on the CD ROM). To execute this code in a Workspace
window:
2.1. In the System Transcript: Select File / Open.
2.2. Double-click on obf_ex.txt (on the CD ROM). A workspace dialog is opened with the example text.
If you are using a shared Smalltalk environment
The example code throughout this tutorial uses class names starting with the letters "Zyx". If you are doing
this tutorial in a classroom environment where you will be sharing the Smalltalk development environment
library (mgr45.dat on a server) with other students, then you should change "Zyx" to some combination of
letters that no other student is using. This is necessary since you will be creating classs during the tutorial
and no 2 classes are allowed to have the same name.
2.3. In the workspace: Select Edit / Find/Replace to replace all occurrences of "Zyx" with a unique
combination of letters.
2.4. Select File / Save.
You can now execute the code as you read through this tutorial.
Note: Any Smalltalk code between square brackets ("[" and "]") should be selected and executed together.
In a Visual Age workspace, the entire text between double brackets can be selected by simply placing the
cursor immediately after the "[" (or immediately before the "]") and double-clicking.

Object Behavior Framework User’s Guide
2. Tutorial

2.3. Create ZyxTutorial application 51

2.3. Create ZyxTutorial application
In this chapter you will:
• Create application ZyxTutorial. All of the classes created during this tutorial will be assigned to your

tutorial application.
• Specify required prerequisites for application ZyxTutorial

2.3.1. Create application ZyxTutorial
3.1. In Visual Age Organizer: Select Options / Full menus to display the full menu set in VAST.
3.2. Select Applications / New. The New Application dialog is displayed.
3.3. In the Name field enter "ZyxTutorial".
3.4. Make sure that the checkbox Subapplication of is not checked.
3.5. Click OK. The application ZyxTutorial is selected in the list of applications.

Figure 2.3.1. ZyxTutorial in the application list

2.3.2. Specify Prerequisites
3.6. From the main menu: Select Application / Prerequisites. The Prerequisites dialog appears.
3.7. Click Change. The Selection required dialog appears.
3.8. Click on MicFwApplicationModelObjects.
3.9. Click on >>. MicFwApplicationModelObjects appears in the list of prerequisite applications.

Figure 2.3.2. Prerequisites for ZyxTutorial

3.10. Click OK. The following dialog appears.

Figure 2.3.3. Prerequisites for ZyxTutorial

3.11. Click OK.

Object Behavior Framework User’s Guide
2. Tutorial
2.4. Create new model / class (OMB)52

2.4. Create new model / class (OMB)
A model is similar to a sketch. Classes, variables and relationships can be "created" within the model with-
out actually being created in VisualAge. The benefits of this are many, including the fact that incomplete
relationships can be created and stored without generating errors in VA.
In this chapter you will:
• Create a new model.
• Create a class in the model (not in VA).
• Save the model (to an .ome file, not to VA).
• Verify that the class does not exist in VA.

2.4.1. Create new model
4.1. From the System Transcript: Select micFrameworks / Open Object Model Browser.... The

Information required dialog appears, with the request Select root class with the default entry of "*".
4.2. Click OK. The Selection required dialog appears, with the request Choose one of the following.
A list of subclasses of MicFwDomainObject is displayed.
4.3. Double-click on any class. The Object Model Browser - Browsing: none dialog appears with the
class net of the selected class:

Figure 2.4.1. OMB main dialog (with class net for MicFwConnectorEditProcess)

4.4. From the OMB main menu: Select Model / New model. A dialog appears with the request Please
enter the name of the new model.
4.5. Enter ZyxModel1.
4.6. Click OK. The OMB dialog is opened for the new (empty) model:

Figure 2.4.2. OMB main dialog (with new model)

Object Behavior Framework User’s Guide
2. Tutorial

2.4. Create new model / class (OMB) 53

2.4.2. Create a class within the model (not in VA)
4.7. Select Class / New class.... The Class specification dialog tab Definition appears.

Figure 2.4.3. Dialog "Class specification" tab "Definition"

4.8. In the field Class name:: Enter ZyxClass1.
4.9. From the drop-down list Inherits from:: Enter MicFwDomainObject.

Figure 2.4.4. Class name and parent class specification in dialog "Class specification"

4.10. Select tab Specification.
4.11. Click on the directory button to the right of the entry field Application:. The Selection Required
dialog appears.
4.12. Double-click on ZyxTutorial. ZyxTutorial is now selected as the application for ZyxClass1.

Figure 2.4.5. ZyxTutorial specified as the application for ZyxClass1 in dialog "Class specification" tab
"Specification"

4.13. Click OK. ZyxClass1 is now displayed in the class net list in the OMB.

Figure 2.4.6. ZyxClass1 in the OMB class net list

2.4.3. Save the model
4.14. Select Model / Save model.... The dialog Save to... appears with the default model file name
ZyxModel1.ome (the default directory is the root directory for VisualAge).
4.15. Click Open. The file ZyxModel1.ome is created.

2.4.4. Verify that class ZyxClass1 does not exist in VA
4.16. From the System Transcript: Select Tools / Browse class. The dialog Information required
appears.
4.17. Enter ZyxClass1.
4.18. Click OK. The message ’ZyxClass1’ is not the name of a class. Try again? appears.
4.19. Click No.

Object Behavior Framework User’s Guide
2. Tutorial
2.5. Reopen / modify model54

2.5. Reopen / modify model
This section demonstrates the basics of opening and modifying models.
In this chapter you will:
• Reopen the model.
• Modify the model and discard the changes.

2.5.1. Reopen (overwrite / reopen) the model
A model is closed by:
• Creating a new model (Model / New model...)
• Opening a model (Model / Open model...)
• Closing the OMB (Model / Close)
5.1. Select Model / Open model.... The message Save changes? appears.
5.2. Click Yes. The dialog Save to... appears with the default model file name ZyxModel1.ome (the
default directory is the root directory for VisualAge).
5.3. Click Open. The message The file [drive:directory]\ZyxModel1.ome already exists? Overwrite
it?.
5.4. Click Yes. The model is saved (overwritten).

2.5.2. Modify model / Discard all changes
5.5. Select Class / Class specification....
5.6. Change the parent class (Inherits from:) to MicFwPersistentObject.
5.7. Click OK.
5.8. Select Model / Discard all changes. The message Discard all changes? appears.
5.9. Click Yes.
5.10. Select ZyxClass1.
5.11. Select Class / Class specification.... Note that the parent class is MicFwDomainObject.
5.12. Click Cancel.

Object Behavior Framework User’s Guide
2. Tutorial

2.6. Export model 55

2.6. Export model
A model can be exported to:
• Smalltalk .st files (file [classname].st is created for each class in the model)
• .xml file (a single .xml file for alls classes in the model)
In this chapter you will:
• Export the model to .st files (an .st file for each model)
• Export the model to a single .xml file.

2.6.1. Export to .st files (.st file for each class)
6.1. Select Model / Save to file.... The dialog Save To... appears with filename ZyxClass1.st. Note: If

more than 1 class exists in the model: A .st file is created for each class; however, the dialog Save To...
will appear only for the first class.

6.2. Click Open. ZyxClass1.st is created (default directory is the VA image directory).

2.6.2. Export to an .xml file (single .xml file for all classes)
6.3. Select Model / Tools / Generate XML. The dialog Save To... appears with filename
ZyxClass1.xml. Note: The name of the .xml file is by default the name of the first class listed in OMB.
6.4. Click Open. ZyxClass1.xml is created (default directory is the VA image directory).

Object Behavior Framework User’s Guide
2. Tutorial
2.7. Save model to VisualAge56

2.7. Save model to VisualAge
A model can be saved (ie, the classes/variables specified in the model are actually created in the Visu-
alAge image) to VisualAge. 2 methods for saving to VisualAge exist:
• Saving to VisualAge from within the OMB
• Within VA: Using File in to input each .st file into the image

2.7.1. Saving to VA from within OMB
7.1. Select Model / Save to VA. The message Please wait. Saving source code appears while the

model is being saved.
7.2. In the VisualAge Organizer: Select application ZyxTutorial. Note that ZyxClass1 is listed as an
application class. Note: If ZyxClass1 already exists in the image for a different application: ZyxClass1 will
not be saved to VA and no warning message will be issued.

2.7.2. Using "File in" to save contents of .st file to VA
7.3. Delete ZyxClass1 from the image.
7.4. From the System Transcript: Select File / Open. The dialog Open File appears.
7.5. Double-click on ZyxClass1.st. A Workspace is opened with the contents of the file:

Figure 2.7.1. Contents of ZyxClass1.st in Workspace dialog

7.6. Select all of the workspace contents.
7.7. From the Workspace menu: Select Edit / File in.
7.8. Close the Workspace.
7.9. In the VisualAge Organizer: Select application ZyxTutorial. Note that ZyxClass1 is listed as an
application class. Note: If ZyxClass1 already exists in the image for a different application: ZyxClass1 will
not be saved to VA and no warning message will be issued.

Object Behavior Framework User’s Guide
2. Tutorial

2.8. Classes 57

2.8. Classes
This chapter describes the basic functions for creating, saving, and deleting classes. In this chapter you
will:
• Specify the default application for all classes
• Create subclasses in the model
• Remove classes from the model
• Add classes from VA to the model
• Find a class in the model

2.8.1. Default application for new classes
8.1. In the OMB: Select Options / Preferences.... The dialog Options appears.
8.2. Select tab Defaults.
8.3. In the field Default application:: Select ZyxTutorial.
8.4. Select radio button Use default for new class. When a new class is created, the class will be assi-
gned to the application specified in the Default application field.

Figure 2.8.1. Specifying default application for new classes

Note 1: If Use parent for Default is selected: When a new class is created, the class will be assigned to
the same application as the parent class.
Note 2: If checkbox Set all to default is checked: All classes in the OMB are assigned to the specified
default application.
Note 3: The application for a class can be changed by selecting Class / Class specification... + selecting
tab Specification + selecting the required application.

2.8.2. Create ZyxClass1 subclass ZyxClass11
By default, a new class is added as a subclass of the class that is currently selected in the OMB.
8.5. Click on ZyxClass1.
8.6. Select Class / New class....
8.7. For Class name:: Enter ZyxClass11 (ZyxClass1 subclass 1). Note that Inherits from: is already
set to ZyxClass1.
8.8. Select another tab to change the focus. The OK key is enabled.
8.9. Click OK. ZyxClass11 is added as a subclass of ZyxClass1 (in the model, not in VA).

Figure 2.8.2. ZyxClass11 as a subclass of ZyxClass1 in the OMB (not in VA)

Note: A class can be assigned a new parent class by Drag&Dropping the class onto the new parent class.

2.8.3. Create MicFwDomainObject subclass ZyxClass2
8.10. Select Class / New class....
8.11. For Class name:: Enter ZyxClass2.
8.12. For Inherits from: Select MicFwDomainObject.

Object Behavior Framework User’s Guide
2. Tutorial
2.8. Classes58

8.13. Click OK. ZyxClass2 is added as a subclass of MicFwDomainObject (in the model, not in VA).

Figure 2.8.3. ZyxClass2 as a subclass of MicFwDomainObject in the OMB (not in VA)

2.8.4. Remove classes from model
8.14. Select Model / Save to VA (the classes will be added from VA later).
8.15. Select ZyxClass1.
8.16. Select Class / Remove class. The message Cannot remove because class "ZyxClass1" has
subclass(es) appears.
8.17. Click OK to close the message dialog.
8.18. Hold down the Ctrl-Key.
8.19. Select with the mouse ZyxClass1, ZyxClass11.
8.20. Select Class / Remove class.The message Remove class(es) "ZyxClass11 ZyxClass1" from
model? appears.
8.21. Click Yes. The classes are removed from the model (but not from VA).

2.8.5. Add MicFwDomainObject subclass ZyxClass1 from VA to model
Adding a class to a model does not add the class’s subclasses.
8.22. Select Class / Add class(es).... The message Select root class appears. "*" (all MicFwDomain-
Object subclasses) is the default.
8.23. Click OK. The Selection required dialog appears. Note that ZyxClass1/ZyxClass11 are not in the
class list.
8.24. Select Model / Save to VA.
8.25. Select Class / Add class(es)....
8.26. Click OK. The Selection required dialog appears. Note that ZyxClass1/ZyxClass11 are in the
class list.
8.27. Double-click on ZyxClass1. Note that the subclass ZyxClass11 was not added to the model.

2.8.6. Add ZyxClass1 subclass ZyxClass11 from VA to model
Adding a subclass to a model adds class’s parent classes (up to and not including MicFwDomainObject).
8.28. Select Model / Discard all changes. The message Discard all changes? appears.
8.29. Click Yes.
8.30. Select Class / Add class(es)....
8.31. Click OK. The Selection required dialog appears. Note that ZyxClass1/ZyxClass11 are in the
class list.
8.32. Double-click on ZyxClass11. Note that the subclass ZyxClass11 and the parent class ZyxClass1
were added to the model.

2.8.7. Finding a class in the model
8.33. Select Class / Find class.... The message Enter the name of the class to find? appears.
8.34. Enter ZyxClass2.
8.35. Click OK. ZyxClass2 is highlighted in the OMB.

Object Behavior Framework User’s Guide
2. Tutorial

2.9. Variables / Framework accessors 59

2.9. Variables / Framework accessors
This chapter describes variables and the accessors created for variables. In this chapter you will:
• Add variables to a class
• Analyze the Framework accessors created for the variables
• Modify accessors
• Modify the default specification for accessors for all variables
• Remove and restore a variable
• Make a variable a virtual variable
• Redefine and remove the redefine of a variable

2.9.1. Add variable var1, var2 to ZyxClass1
9.1. In the OMB: Select ZyxClass1.
9.2. Select Variable / Add variable.... The message Enter the name(s) or the new instance varia-
ble(s) appears.
9.3. Enter var1 var2.
9.4. Click OK. The variables appear in the OMB as variables for ZyxClass1

Figure 2.9.1. ZyxClass1>>var1, var2 in the OMB (not in VA)

and as inherited variables for ZyxClass11.

Figure 2.9.2. ZyxClass11 inherited variables var1, var2 in the OMB (not in VA)

9.5. Save the model to ZyxModel1.ome.

2.9.2. Framework accessors generated when model variables saved to VA
9.6. Select Model / Save to VA.
9.7. In the VisualAge Organizer: Double click on class ZyxClass1 (in application ZyxTutorial). The
Script Editor on ZyxClass1 is opened.
Select all categories of instance methods for ZyxClass1.

Figure 2.9.3. ZyxClass1 instance methods for var1, var2

The following methods were created for var1 when the OMB contents were saved to VA:
basicVar1

^var1
basicVar1: anObject

var1 := anObject
var1

^self readAccessTo: #var1 currentValue: var1.
var1: anObject

self writeAccessTo: #var1 newValue: anObject currentValue: var1.

Object Behavior Framework User’s Guide
2. Tutorial
2.9. Variables / Framework accessors60

The basic accessors (basicVar1, basicVar1:) provide direct access to the variables and should normally
not be used. The framework accessors (var1, var1:) provide access to the variable through framework
mechanisms.

2.9.3. Modify accessors for ZyxClass1>>var1
9.8. Select ZyxClass1.
9.9. Select var1.
9.10. Select tab Accessors. The default accessor method names for ZyxClass1>>var1 are shown:

Figure 2.9.4. ZyxClass1>>var1 default accessor methods

9.11. Change Basic read accessor to basicVar1X.
9.12. Save to VA. Note that the instance methods now include basicVar1X:

Figure 2.9.5. ZyxClass1>>var1 instance method basicVar1X

2.9.4. Modify accessor prefix defaults for all classes
9.13. Select Options / Preferences.
9.14. Select tab Accessor prefixes. The default accessor method prefixes for all classes are shown:

Figure 2.9.6. Default accessor method prefixes for all classes

9.15. Change Basic read to basicX.
9.16. Check checkbox Set all to default.
9.17. Click OK. Note that the accessors for all variables have been changed to the defaults specified:

Figure 2.9.7. ZyxClass1>>var1, var2 accessor method names

9.18. Change the default for Basic read back to basic.

Object Behavior Framework User’s Guide
2. Tutorial

2.9. Variables / Framework accessors 61

2.9.5. Remove var2
9.19. In the OMB: Select ZyxClass11.
9.20. Select var2. Note that menu item Variable / Remove variable is disabled, since var2 is an inheri-
ted variable.
9.21. In the OMB: Select ZyxClass1.
9.22. Select var2.
9.23. Select Variable / Remove variable. The message Do you really want to remove "var2" from
"ZyxClass1"? appears.
9.24. Click Yes. Note that var2 is removed (in the model).
9.25. Select Model / Save to VA.
9.26. Refresh the Script Editor on ZyxClass1. Note that the accessors for var2 no longer exist.

2.9.6. Restore var2; Make a virtual variable
9.27. Select Model / Discard all changes.
9.28. Confirm the discarding of all changes. Note that var2 appears again in the model.
9.29. Select ZyxClass1.
9.30. Select var2.
9.31. Select Variable / Make virtual variable. The message Make "var2" a virtual variable in
"ZyxClass1"? appears.
Click Yes. Note that the icons for var2 in ZyxClass1 and ZyxClass11 are marked with a "V" for virtual.

Figure 2.9.8. "V" marking (for virtual) for var2 in ZyxClass1, ZyxClass11 in OMB

9.32. Select Model / Save to VA.
9.33. In the VisualAge Organizer: Double click on class ZyxClass1 (in application ZyxTutorial). Note
that there are no accessors for var2.

2.9.7. Make var2 a non-virtual variable; Redefine var2 in subclass ZyxClass11
9.34. Select ZyxClass1.
9.35. Select var2.
9.36. Select Variable / Make virtual variable (this menu item is checked; selecting will cause the item to
be unchecked). The message Do you really want to remove "var2" from "ZyxClass1"? appears.
9.37. Click Yes. Note that var2 is no longer marked as virtual.
9.38. Select ZyxClass11.
9.39. Select var2.
9.40. Select Variable / Redefine variable. The message Redefine "var2" in "ZyxClass11"? appears.
9.41. Click Yes. Note that the icon for var2 in ZyxClass11 are marked with a "R" for redefine.

Figure 2.9.9. "R" marking (for redefine) for var2 in ZyxClass11 in OMB

9.42. Save the model to VA.
9.43. Open the Script Editor on ZyxClass11. Note that accessors were created for var2 in ZyxClass11.

2.9.8. Remove redefine of var2 in subclass ZyxClass11
9.44. Select ZyxClass11.
9.45. Select var2.
9.46. Select Variable / Remove redefine variable. The message Do you really want to remove "var2"
from "ZyxClass11"? appears.
9.47. Click Yes. Note that the "R" marking for the icon for var2 in ZyxClass11 is gone.

Object Behavior Framework User’s Guide
2. Tutorial
2.9. Variables / Framework accessors62

9.48. Save the model to VA.
9.49. Open the Script Editor on ZyxClass11. Note that the accessors for var2 are gone.

Object Behavior Framework User’s Guide
2. Tutorial

2.10. Variable typing (Integer) (with manual type validation, manual/automatic 63

2.10. Variable typing (Integer) (with manual type validation, man-
ual/automatic type conversion)

This section demonstrates basic variable typing (including manual type validation and manual/automatic
type conversion). In this section you will:
• Delete previous classes / create class ZyxPerson, variable ZyxPerson>>id.
• Type ZyxPerson>>id as Integer.
• Analyze accessors for the typed variable.
• Test with no validation (and no conversion)
• Test manual validation (message isTypeValid) using MicFwTypeConverter.
• Test manual validation (message isTypeValid) using MicFwEmptyTypeConverter.
• Test manual conversion (message convertValues) using MicFwTypeConverter
• Test manual conversion (message convertValues) using MicFwEmptyTypeConverter.
• Specify automatic conversion (checkbox validateType)
• Analyze accessors for the automatic conversion
• Test automatic conversion using MicFwTypeConverter.
• Test automatic conversion using MicFwEmptyTypeConverter.

2.10.1. Delete classes / Create ZyxPerson, ZyxPerson>>id
10.1. Delete all classes (ZyxClass1, ZyxClass11, ZyxClass2) from the model.
10.2. Add class ZyxPerson with parent class MicFwDomainObject and application ZyxTutorial.
10.3. Add variable ZyxPerson>>id.

2.10.2. Type ZyxPerson>>id as Integer
10.4. Select variable ZyxPerson>>id.
10.5. Select tab Typing.
10.6. From the drop-down list Typing: Select Integer.

Figure 2.10.1. ZyxPerson>>id typed as Integer

Note: The Size and Scale fields can be left blank (default values are used).
10.7. Save the model.
10.8. Save the model to VA. Note: The classes deleted from the model are not deleted from VA.

2.10.3. Framework accessors for typed variable
10.9. In the VisualAge Organizer: Double click on class ZyxPerson (in application ZyxTutorial). The
Script Editor on ZyxClass1 is opened. Note the following methods:
id

^self readAccessTo: #id currentValue: id.
id: anObject

self writeAccessTo: #id newValue: anObject currentValue: id.

The accessors are the same as previously.

2.10.4. Test with no validation
Assign Integer, String, Array to ZyxPerson>>id (no errors).
10.10. In the workspace Execute the following code:

Object Behavior Framework User’s Guide
2. Tutorial
2.10. Variable typing (Integer) (with manual type validation, manual/automatic64

OBF CH 2.10.#1. Assign Integer, String, Array to ZyxPerson>>id.
No errors."
[
ZyxPerson new

id: 1234; "(self/id = 1234)"
inspect.

ZyxPerson new
id: 'abcd'; "(self/id = 'abcd')"
inspect.

ZyxPerson new
id: #(1 2); "(self/id = (1 2))"
inspect

]

2.10.5. Test manual validation (message isTypeValid)
2.10.5.1. Assign Integer to ZyxPerson>>id (no error)

10.11. In the workspace Display the following code:
OBF CH 2.10.#2. Assign Integer to ZyxPerson>>id.
Manual validation / type valid."
[
ZyxPerson new

id: 1234;
isTypeValid. "(true)"

]

2.10.5.2. Assign String to ZyxPerson>>id (no error)
A String can be assigned to ZyxPerson>>id.
10.12. In the workspace Display the following code:
OBF CH 2.10.#3. Assign String to ZyxPerson>>id.
Manual validation / type valid."
[
ZyxPerson new

id: 'abcd';
isTypeValid. "(true)"

]

2.10.5.3. Assign Array to ZyxPerson>>id (no error; type invalid)
An Array can be assigned to ZyxPerson>>id. However, the type is not valid.
10.13. In the workspace Display the following code:
OBF CH 2.10.#4. Assign Array to ZyxPerson>>id.
Manual validation / type invalid."
[
ZyxPerson new

id: #(1 2);
isTypeValid. "(false)"

]

2.10.6. Test manual conversion (message convertValues) using MicFwTypeConverter
The message convertValues will cause an object to attempt to convert any objects referenced by its typed
variables into the type of objects specified by the variables’ types.
10.14. MicFwTypeConverter is the default converter.

Figure 2.10.2. Default converter (MicFwTypeConverter) for ZyxPerson>>id

Object Behavior Framework User’s Guide
2. Tutorial

2.10. Variable typing (Integer) (with manual type validation, manual/automatic 65

2.10.6.1. String (of digits)
A String of digits assigned to ZyxPerson>>id can be converted.
10.15. In the workspace Inspect the following code:
OBF CH 2.10.#5. Assign String (of integers) to ZyxPerson>>id and convertVa-
lues.
No error."
[
ZyxPerson new

id: '1234';
convertValues;
id "(self = 1234)"

]

2.10.6.2. String (of letters)
A String of letters assigned to ZyxPerson>>id can be converted. However, the resultant object is Integer
0.
10.16. In the workspace Inspect the following code:
OBF CH 2.10.#6. Assign String (of letters)to ZyxPerson>>id and convertValues.
No error."
[
ZyxPerson new

id: 'abcd';
convertValues;
id "(self = 0)"

]

2.10.6.3. Array (debugger)
A Array can be assigned to ZyxPerson>>id. However, the convertValues throws an exception.
10.17. In the workspace Execute the following code:
OBF CH 2.10.#7. Assign Array to ZyxPerson>>id and convertValues (exception).
Debugger."
[
ZyxPerson new

id: #(1 2);
convertValues. "debugger: type error"

]

The Debugger appears with the message ´Type error - expected: Integer found: (1 2)´.

2.10.7. Test manual conversion (message convertValues) using MicFwTypeConverter
2.10.7.1. Change the type converter for ZyxPerson>>id

10.18. Select ZyxPerson.
10.19. Select id.
10.20. Select tab Variable.
10.21. From drop-down list Type converter: Select MicFwEmptyTypeConverter.
10.22. Save the model.
10.23. Save to VA.

2.10.7.2. String (of letters)
A String of letters assigned to ZyxPerson>>id cannot be converted by MicFwEmptyTypeConverter.
10.24. In the workspace Execute the following code:
OBF CH 2.10.#8. Assign String (of letters)to ZyxPerson>>id and convertValues.
Exception (MicFwEmptyTypeConverter cannot convert)."
[
ZyxPerson new

id: 'abcd';
convertValues "debugger"

]

The Debugger appears with the message ´Type error - expected: Integer found: "abcd"´.

Object Behavior Framework User’s Guide
2. Tutorial
2.10. Variable typing (Integer) (with manual type validation, manual/automatic66

2.10.8. Specify automatic conversion (checkbox validateType)
10.25. Select ZyxPerson.
10.26. Select id.
10.27. Select tab Variable.
10.28. Check checkbox Validate type.
10.29. Save the model.
10.30. Save to VA.

2.10.9. Framework accessors for automatic conversion
10.31. In the VisualAge Organizer: Double click on class ZyxPerson (in application ZyxTutorial). The
Script Editor on ZyxClass1 is opened. Note the following methods:
id

^self readAccessTo: #id currentValue: id.
id: anObject

self validatedWriteAccessTo: #id newValue: anObject currentValue: id.

The read accessor is unchanged. The write accessor sends the new message validatedWriteAc-
cessTo:newValue:currentValue:.

2.10.10. Test automatic conversion using MicFwTypeConverter
10.32. Change the Type converter for ZyxPerson>>id to MicFwTypeConverter.
10.33. Save to VA.

2.10.10.1. Assign String to ZyxPerson>>id (no error; auto-conversion to Integer)
10.34. In the workspace Inspect the following code:
OBF CH 2.10.#9. Assign String to ZyxPerson>>id.
Auto-conversion / no error."
[
ZyxPerson new

id: 'abcd' "(self / id = 0)"
]

2.10.10.2. Assign Array to ZyxPerson>>id (error)
Assigning an Array causes an exception.
10.35. In the workspace Execute the following code:
OBF CH 2.10.#10. Assign Array to ZyxPerson>>id.
Auto-conversion / exception."
[
ZyxPerson new

id: #(1 2)
]

The Debugger appears with the message ´Type error - expected: Integer found: (1 2)´.

2.10.11. Test automatic conversion using MicFwEmptyTypeConverter
10.36. Change the Type converter for ZyxPerson>>id to MicFwEmptyTypeConverter.
10.37. Save to VA.

2.10.11.1. Assign String to ZyxPerson>>id (no error; auto-conversion to Integer)
10.38. In the workspace Inspect the following code:
OBF CH 2.10.#11. Assign String to ZyxPerson>>id.
Auto-conversion with MicFwEmptyTypeConverter / exception."
[
ZyxPerson new

id: 'abcd' "debugger"
]

The Debugger appears with the message ´Type error - expected: Integer found: "abcd"´.

Object Behavior Framework User’s Guide
2. Tutorial

2.11. Variable typing (Date) 67

2.11. Variable typing (Date)
This section again demonstrates basic variable typing. In this section you will:
• Add variable ZyxPerson>>dateOfBirth with type Date.
• Test (using obf_ex.txt examples).

2.11.1. Create ZyxPerson>>dateOfBirth with type Date
11.1. Add variable ZyxPerson>>dateOfBirth.
11.2. Set the Type to Date.

Figure 2.11.1. ZyxPerson>>dateOfBirth with type Date

11.3. Save the model.
11.4. Save to VA.

2.11.2. Test
2.11.2.1. Assign String to ZyxPerson>>dateOfBirth (no error)

ZyxPerson>>dateOfBirth is typed as Date. However, Validate Type was not checked in the ONB. There-
fore, any type of object can be assigned to ZyxPerson>>dateOfBirth.
11.5. In the workspace execute the following code:
OBF CH 2.11.#1. Assign String (of chars) to Date variable.
No validation.
No conversion / No error / Type is NOT valid."
[
ZyxPerson new

dateOfBirth: '1 Jan 2000';
inspect; "(dateOfBirth = '1 Jan 2000')"
isTypeValid. "(false)"

]

2.11.2.2. Assign String (of characters representing invalid Date) to ZyxPerson>>id and
convertValues

In the following example, a String object (containing characters NOT representing a valid Date) is assigned
to ZyxPerson>>dateOfBirth (without validation). Sending the convertValues message to the ZyxPerson
object throws an exception.
11.6. In the workspace execute the following code:
OBF CH 2.11.#2. Assign String (containing invalid Date) to Date variable.
No validation.
Attempt to convert with convertValues: Opens debugger."
[
ZyxPerson new

dateOfBirth: '1234';
inspect; "(self/dateOfBirth = ’1234’)"
convertValues. "(debugger: type error)"

]

2.11.2.3. Assign String (of characters representing valid Date) to ZyxPerson>>id and
convertValues

In the following example, a String object (containing characters representing a valid Date) is assigned to
ZyxPerson>>dateOfBirth (without validation). Sending the convertValues message to the ZyxPerson

Object Behavior Framework User’s Guide
2. Tutorial
2.11. Variable typing (Date)68

object causes a Date object to be created from the String object and assigned to the variable.
11.7. In the workspace execute the following code:
OBF CH 2.11.#3. Assign String (containing valid Date) to Date variable.
No validation.
Convert with convertValues.
Conversion / no error / type valid."
[
ZyxPerson new

dateOfBirth: '1 Jan 2000';
convertValues;
inspect; "(self/dateOfBirth = 01.01.00)"
isTypeValid. "(true)"

]

2.11.2.4. Assign String (containing valide date) to ZyxPerson>>dateOfBirth with Valida-
tion

11.8. Enable Validate for ZyxPerson>>dateOfBirth (do not forget to save the class).
In the following example, a String object (containing characters representing a valid Date) is assigned to
ZyxPerson>>dateOfBirth (with validation).
11.9. In the workspace execute the following code:
OBF CH 2.11.#4. Assign String (containg valid Date) to Date variable.
Validation.
Conversion.
No error."
[
ZyxPerson new

dateOfBirth: '1 Jan 2000';
inspect; "(dateOfBirth = 01.01.00)"
isTypeValid. "(true)"

]

Object Behavior Framework User’s Guide
2. Tutorial

2.12. Persistent / Key variables 69

2.12. Persistent / Key variables
In this section you will:
• Specify a variable as being persistent
• Analyze the Framework accessors for the variable
• Specify a variable as being a key variable
• Anaylze how persistent and key variables can be used in the Persistence Framework

2.12.1. Specify ZyxPerson>>id as persistent
12.1. Select ZyxPerson>>id.
12.2. Select tab Properties.
12.3. Click in row persistent column Value. Radio buttons appear:

Figure 2.12.1. Radio buttons for Key property for ZyxPerson>>id

12.4. Select True.
12.5. Click to change the focus. Note that Value for key is now "True".
12.6. Save the model.
12.7. Save to VA.

2.12.2. Framework accessors for Persistent variable
12.8. In the VisualAge Organizer: Double click on class ZyxPerson (in application ZyxTutorial). The
Script Editor on ZyxPerson is opened. Note the following methods:
id

^self readAccessTo: #id currentValue: id.
id: anObject

self validatedWriteAccessTo: #id newValue: anObject currentValue: id.

The methods are unchanged. However, internally support for persistence has now been added.

2.12.3. Specify ZyxPerson>>id as a key variable
13.1. Select ZyxPerson>>id.
13.2. Select tab Properties.
13.3. Click in row key column Value. Radio buttons appear.
13.4. Select True.
13.5. Click to change the focus. Note that Value for key is now "True".
13.6. Save the model.
13.7. Save to VA.

2.12.4. Specify ZyxPerson>>dateOfBirth as a persistent variable
14.1. Select ZyxPerson>>dateOfBirth.
14.2. Select tab Properties.
14.3. Click in row persistent column Value. Radio buttons appear.
14.4. Select True.
14.5. Click to change the focus. Note that Value for persistent is now "True".
14.6. Save the model.
14.7. Save to VA.

2.12.5. Application: Key variable for persistence object
You now know how to specify a variable as type Integer. One possible application for such functionality is
creating a key variable for a persistent object.

Object Behavior Framework User’s Guide
2. Tutorial
2.12. Persistent / Key variables70

Persistent objects are objects that are stored in a database. Database columns require stringent typing.
Therefore, since the OBF ensures that ZyxPerson>>id always references an Integer object, ZyxPer-
son>>id can easily be made persistent.
By specifying ZyxPerson>>id as a Key variable, the Integer object referenced by a ZyxPerson instance
could be used as a Primary Key for identifying the ZyxPerson instance in the table (each instance would
be stored in a row in the table).
The following diagram shows how a persistent Smalltalk object (a ZyxPerson instance) and an entry in a
database table would be related.

Figure 2.12.2. Persistent variable ZyxPerson>>id and entry in database table PERSON

Note: Detailed information about key variables and persistent objects are outside the scope of this tutorial.
For an introduction, see the Frameworks Getting Started Manual. For detailed information, consult the
Persistence Framework User’s Guide.

2.12.6. Application: Date variable for persistence object
You now know how to specify a variable as type Date. One possible application for such functionality is for
a persistence object.
The following diagram shows how a persistent Smalltalk object (a ZyxPerson instance with variables id
and dateOfBirth) and an entry in a database table would be related.

Figure 2.12.3. Persistent variable ZyxPerson>>dateOfBirth and entry in database table PERSON column
DATEBIRTH

id

ZyxPerson instance

Table: PERSON

DI HTRIBEAIDD

3 0991.10.10

PK

Key

D
at

ab
as

e

S
m

alltalk

dateOfBirth

id

ZyxPerson instance

Table: PERSON

DI HTRIBETAD

3 0991.10.10

D
at

ab
as

e

S
m

alltalk

Object Behavior Framework User’s Guide
2. Tutorial

2.13. ->1 relationship 71

2.13. ->1 relationship
This section demonstrates how to create a ->1 relationship between 2 classes.

Figure 2.13.1. ->1 relationship

In this section you will:
• Create MicFwDomainObject subclass ZyxName, ZyxName>>firstName, ZyxName>>lastName.
• Add variable ZyxPerson>>name.
• Establish a ->1 (primitive) relationship from ZyxPerson>>name to 1..1 ZyxName objects
• Test.
• Analyze a possible application.

2.13.1. Create MicFwDomainObject subclass ZyxName with variables firstName, last-
Name

15.1. In OMB: Create MicFwDomainObject subclass ZyxName.
15.2. Add ZyxName>>firstName with type String.
15.3. Enter for Size value 50. Note: The focus must be changed before the entry field is available. Click
on a different tab to change the focus.
15.4. Add ZyxName>>lastName with type String (size 50).

Figure 2.13.2. Defining ZyxName variables in OMB

2.13.2. Add variable ZyxPerson>>name
15.5. Add variable ZyxPerson>>name.

2.13.3. Establish a ->1 (primitive) relationship from ZyxPerson>>name to 1..1 ZyxName
objects

The relationship will be specified as ->1. This means that the source object has a variable that references
the target object, but the target object has no variable that references the source object. This type of rela-
tionship is primitive.

2.13.3.1. Specify for source variable: relationship type
15.6. Select name.
15.7. Select tab Variable.

Person instance

name (type PersonName)

PersonName instance

Object Behavior Framework User’s Guide
2. Tutorial
2.13. ->1 relationship72

15.8. Check the checkbox Relationship.

Figure 2.13.3. Checkbox "Relationship" in the OMB

15.9. Select tab Typing. Note that the contents of the tab have changed.

Figure 2.13.4. Tab "Typing" for a relationship

15.10. Check the checkbox Primitive (this checkbox is already checked by default). This specifies an ->N
relationship.

2.13.3.2. Specify for source variable: target class
15.11. From the Target class drop-down list Class: Select ZyxName.

2.13.3.3. Specify for source variable: # of allowed target classes
An ->N relationship can be further specified as a ->1 relationship by setting the cardinality of the relation-
ship to 1..1.
15.12. Set the Source class minimum (of referenced target classes) to 1. This means that the variable
"name" for each instance of ZyxPerson should reference minimum 1 instance of ZyxName.
15.13. Set the Source class maximum (of referenced target classes) to 1. This means that the variable
"name" for each instance of ZyxPerson should reference maximum 1 instance of ZyxName.

Figure 2.13.5. Source class minimum/maximum (# of allowed target classes)

15.14. Save the model.
15.15. Save to VA.

2.13.4. Test
2.13.4.1. Assign Integer to ZyxPerson>>name (no error)

Validate Type was not checked in the ONB for ZyxPerson>>name. Therefore, any type of object can be
assigned to ZyxPerson>>name.
15.16. In the workspace Display the following code:
OBF CH 2.13.#1. Assign Integer to source variable of ->1 relationship.
No validation.
No error."
[
ZyxPerson new

name: 5678;

Object Behavior Framework User’s Guide
2. Tutorial

2.13. ->1 relationship 73

inspect; "self/name/target = 5678"
isTypeValid. "(true)"

]

2.13.4.2. Assign objects to ZyxPerson>>name with Validation enabled
15.17. Check the checkbox Validate type for ZyxPerson>>name.
15.18. Save the model.
15.19. Save to VA.

2.13.4.2.1. Assign Integer to ZyxPerson>>name with Validation
In the following example, an Integer object is assigned to ZyxPerson>>name (with validation). An excep-
tion is thrown.
15.20. In the workspace execute the following code:
OBF CH 2.13.#2. Assign Integer to source variable of ->1 relationship.
Validation.
Debugger."
[
ZyxPerson new

name: 5678. "debugger: 'Type error - expected: ZyxName'."
]

2.13.4.2.2. Assign ZyxName instance to ZyxPerson>>name with Validation
In the following example, a ZyxName instance is assigned to ZyxPerson>>name (with validation).
15.21. In the workspace Execute the following code:
OBF CH 2.13.#3. Assign ZyxName to source variable of ->1 relationship.
Validation.
No error."
[
ZyxPerson new

name: ZyxName new;
inspect. "self id target = a ZyxName"

]

2.13.5. Application: ->1 relationship
You now know how to specify a variable as a source variable for a ->1 relationship. One possible applica-
tion for such functionality is for a persistence object.
The following diagram shows how 2 persistent Smalltalk objects (->1 relationship source ZyxPerson
instance with variables id and name, and ->1 relationship target ZyxName with variables firstName and
lastName) and an entry in a database table would be related.

Figure 2.13.6. ->1 relationship source ZyxPerson>>name and target ZyxName in database table PERSON

firstName

lastNamename

id

DI EMANTSRIF EMANTSAL

3 3emantsrif 3emantsal

1

Table: PERSON

ZyxPerson instance

D
at

ab
as

e

S
m

alltalk

ZyxPersonName instance

Object Behavior Framework User’s Guide
2. Tutorial
2.13. ->1 relationship74

Note that on the table side that ZyxName does not have its own table. For the table, only the simple vari-
able types (Integer, String, etc) that are recognized by the database have meaning.
Note that the context for both the ZyxPerson and ZyxName objects are loaded from the same table. ->1
relationships are typically used when information should be stored in a single table but represented by mul-
tiple objects.

Object Behavior Framework User’s Guide
2. Tutorial

2.14. Adding class nets to the model 75

2.14. Adding class nets to the model
This section demonstrates how to add class nets to the model.
A class net is a set of all classes that are related to each other in one of the following ways:
• Parent / child class (parent up to and not including MicFwDomainObject).
• A class references another class via a relationship.
Note: A class net is determined starting with the specified class. If the net includes ClassB that is refer-
enced in a primitive relationship by ClassA (ie, ClassA is not referenced by any variable in ClassB), then
ClassA is NOT added to the class net (at least not because of the ClassA variable that references ClassB).
In this section you will:
• Create ZyxName subclass ZyxNameSubclass.
• Add ZyxNameSubclass class net to the model
• Add ZyxName class net to the model
• Add ZyxPerson class net to the model

2.14.1. Create ZyxName subclass ZyxNameSubclass; Save to VA
16.1. Create ZyxName subclass ZyxNameSubclass.

Figure 2.14.1. ZyxNameSubclass in OMB

16.2. Save to VA.

2.14.2. Add ZyxNameSubclass class net to model
16.3. Delete all classes in the model.
16.4. Save the model.
16.5. Select Class / Add class net.... The message Select root class appears with default "*".
16.6. Click OK.
16.7. From the list of classes: Double-click on ZyxNameSubclass. The following classes are added to
the model:

Figure 2.14.2. Object net for ZyxNameSubclass

2.14.3. Add ZyxName class net to model
16.8. Delete all classes in the model.
16.9. Save the model.
16.10. Select Class / Add class net.... The message Select root class appears with default "*".
16.11. Click OK.
16.12. From the list of classes: Double-click on ZyxName. The following classes are added to the model:

Figure 2.14.3. Object net for ZyxName

2.14.4. Add ZyxPerson class net to model
16.13. Delete all classes in the model.
16.14. Save the model.
16.15. Select Class / Add class net.... The message Select root class appears with default "*".
16.16. Click OK.

Object Behavior Framework User’s Guide
2. Tutorial
2.14. Adding class nets to the model76

16.17. From the list of classes: Double-click on ZyxPerson. The following classes are added to the model:

Figure 2.14.4. Object net for ZyxPerson

Object Behavior Framework User’s Guide
2. Tutorial

2.15. ->N relationship 77

2.15. ->N relationship
This section demonstrates how to create a ->N relationship between 2 classes. The relationship differs
from that in the previous section in that the cardinality maximum (max number of Target objects) will be >
1.

Figure 2.15.1. ->N relationship

In this section you will:
• Create MicFwDomainObject subclass ZyxAddress, ZyxAddress>>cityName.
• Add variable ZyxPerson>>addresses.
• Establish ->N (primitive) relationship from ZyxPerson>>addresses to 1..3 ZyxAddress objects
• Test.
• Analyze a possible application.

2.15.1. Create MicFwDomainObject subclass ZyxAddress with variable cityName
17.1. In OMB: Create MicFwDomainObject subclass ZyxAddress.
17.2. Add ZyxAddress>>cityName with type String.
17.3. Enter for Size value 50. Note: The focus must be changed before the entry field is available. Click
on a different tab to change the focus.

Figure 2.15.2. Defining ZyxAddress variables in OMB

2.15.2. Add variable ZyxPerson>>addresses
17.4. Add variable ZyxPerson>>addresses.

2.15.3. Establish a ->N (primitive) relationship from ZyxPerson>>addresses to 1..3 Zyx-
Address objects

The relationship will be specified as ->N. This means that the source object has a variable that references
the target objects, but a target object has no variable that references the source object. This type of rela-
tionship is primitive.

2.15.3.1. Specify for source variable addresses: relationship type
17.5. Select addresses.
17.6. Select tab Variable.
17.7. Check the checkbox Relationship.
17.8. Select tab Typing. Note that the contents of the tab have changed.
17.9. Check the checkbox Primitive (this checkbox is already checked by default). This specifies an ->N
relationship.

2.15.3.2. Specify for source variable: target class
17.10. From the Target class drop-down list Class: Select ZyxAddress.

2.15.3.3. Specify for source variable: # of allowed target classes
17.11. Set the Source class minimum (of referenced target classes) to 1. This means that the variable
"addresses" for each instance of ZyxPerson should reference minimum 1 instance of ZyxAddress.
17.12. Set the Source class maximum (of referenced target classes) to 3. This means that the variable

Person instance

addresses
(type: set of Address objects)

1..3

Set of 1..3 Address objects

Address object

Object Behavior Framework User’s Guide
2. Tutorial
2.15. ->N relationship78

"addresses" for each instance of ZyxPerson should reference maximum 3 instances of ZyxAddress.

Figure 2.15.3. Source class minimum/maximum (# of allowed target classes)

17.13. Save the model.
17.14. Save to VA.

2.15.4. Test
2.15.4.1. No validation

17.15. Assign ZyxPerson>>addresses an Integer object with Validate Type disabled. No error occurs.
OBF CH 2.15.#1. Assign Integer to variable of type Set(1..3) of ZyxAddress.
No validation.
No error / type valid."
[
| aPerson |
aPerson := ZyxPerson new.

aPerson addresses add: 1234.
aPerson inspect. "self/addresses/target = IdentitySet(1234)"
aPerson isTypeValid. "(true)"

]

17.16. Assign ZyxPerson>>addresses 4 objects with Validate Type disabled using the add: message
(the standard Frameworks message for adding a member to a relationship set). Note that with Valida-
teType disabled no exception is thrown, although the relationship for ZyxPerson>>addresses specifies a
max of 3 objects.
OBF CH 2.15.#2. Assign 4 objects to variable of type Set(1..3) of ZyxAddress.
No validation.
No error / Type valid."
[
| aPerson |
aPerson := ZyxPerson new.

aPerson addresses add: 12.
aPerson addresses add: #($a $b).
aPerson addresses add: 56.
aPerson addresses add: 78.
aPerson inspect. "self/addresses/target = IdentitySet(12 ($a $b) 56 78)"
aPerson isTypeValid. "(true)"

]

2.15.4.2. Validation
17.17. Enable Validate for ZyxPerson>>addresses.
17.18. Save the model.
17.19. Save to VA.
17.20. Assign ZyxPerson>>addresses an Integer object. Exception thrown.

Object Behavior Framework User’s Guide
2. Tutorial

2.15. ->N relationship 79

OBF CH 2.15.#3. Assign Integer to variable of type Set(1..3) of ZyxAddress.
Validation.
Exception."
[
| aPerson |

aPerson := ZyxPerson new.
aPerson addresses add: 1234.
aPerson inspect. "exception: type error"

]

17.21. Assign ZyxPerson>>addresses 1 ZyxAddress object.
OBF CH 2.15.#4. Assign 1 ZyxAddress to variable type Set(1..3) of ZyxAddress.
Validation.
No error / Type valid."
[
| aPerson |
aPerson := ZyxPerson new.

aPerson addresses add: ZyxAddress new.
aPerson inspect. "self/addresses/target = IdentitySet(a ZyxAddress)"
aPerson isTypeValid. "(true)"

]

17.22. Assign ZyxPerson>>addresses 3 ZyxAddress objects with Validate Type.
OBF CH 2.15.#5. Assign 3 ZyxAddress to variable type Set(1..3) of ZyxAddress.
Validation.
No error / Type valid."
[
| aPerson |
aPerson := ZyxPerson new.

aPerson addresses add: ZyxAddress new.
aPerson addresses add: ZyxAddress new.
aPerson addresses add: ZyxAddress new.
aPerson inspect. "self/addresses/target =

IdentitySet(a ZyxAddress a ZyxAddress a ZyxAddress)"
aPerson isTypeValid. "(true)"

]

17.23. Assign ZyxPerson>>addresses 4 ZyxAddress objects. A cardinality exception is thrown.
OBF CH 2.15.#6. Assign 4 ZyxAddress to variable type Set(1..3) of ZyxAddress.
Validation.
Cardinality exception.
[
| aPerson |
aPerson := ZyxPerson new.

aPerson addresses add: ZyxAddress new.
aPerson addresses add: ZyxAddress new.
aPerson addresses add: ZyxAddress new.
aPerson addresses add: ZyxAddress new. "exception: cardinality violation"

]

2.15.5. Review how the OBF classes and methods you created can be used by PFW.
->N relationships are required by PFW for mapping objects to tables.
The accessors created for ZyxPerson>>address specify:
• The type for the variable is ZyxAddress.
• A ->(1..3) relationship specifies that ZyxPerson>>address references 1..3 ZyxAdderss objects.
The PFW can now use these classes to make the object persistent. The following diagram shows how the

Object Behavior Framework User’s Guide
2. Tutorial
2.15. ->N relationship80

Smalltalk objects and the database tables would be related.

Figure 2.15.4. The ->N relationship between ZyxPerson and ZyxAddress in table ADDRESS

Note that on the table side the type ZyxAddress is stored as a separate object. The primary key of the
PERSON table is the Foreign Key of the ADDRESS table.

DI EMANTSRIF EMANTSAL

3 3emantsrif 3emantsal

Table: PERSON

ZyxPerson ZyxAddress

firstName

lastNameaddresses

id

1..3

Object ZyxPerson

DI YTIC ETATS

3 1ytic3nosrep 1etats3nosrep

3 2ytic3nosrep 2etats3nosrep

3 3ytic3nosrep 3etats3nosrep

Table: ADDRESS

(PK) (FK)

D
at

ab
as

e

S
m

alltalk

Object Behavior Framework User’s Guide
2. Tutorial

2.16. 1<->1 relationship 81

2.16. 1<->1 relationship
This section demonstrates how to implement a 1<->1 relationship between 2 classes.

Figure 2.16.1. 1<->1 relationship

In this section you will:
• Create classes and variables (create ZyxCustomer, ZyxCustomer>>portfolio, ZyxPortfolio, Zyx-

Portfolio>>customer).
• Set ZyxCustomer>>portfolio type to ZyxPortfolio and ZyxPortfolio>>customer type to ZyxCus-

tomer.
• Set cardinality of ZyxCustomer>>portfolio to 1..1 and set cardinality of ZyxPortfolio>>customer to 1..1.
• Review how the OBF classes and methods you created might be used by PFW.

2.16.1. Create classes and variables.
18.1. Create ZyxPerson subclass ZyxCustomer.
18.2. Create ZyxCustomer>>portfolio.
18.3. Create MicFwDomainObject subclass ZyxPortfolio.
18.4. Create ZyxPortfolio>>customer.

2.16.2. Set ZyxCustomer>>portfolio type as 1<->1 relationship
18.5. Specify ZyxCustomer>>portfolio as Relationship (checkbox Relationship).
18.6. Specify Source class minimum...maximum as 1..1.
18.7. Specify Target class as ZyxPortfolio.
18.8. Specify variable as Customer.
18.9. Specify Target class minimum...maximum as 1..1.

Figure 2.16.2. ZyxCustomer>>portfolio definition

Customer instance

portfolio (type Portfolio)

Portfolio instance
1

1
customer (type Customer)

Object Behavior Framework User’s Guide
2. Tutorial
2.16. 1<->1 relationship82

18.10. Display tab Typing for ZyxPortfolio>>customer.

Figure 2.16.3. ZyxCustomer>>portfolio definition

18.11. Save model.
18.12. Save to VA.

2.16.3. Review how the OBF classes and methods you created can be used by PFW.
1<->1 relationships are required by PFW for mapping objects to tables.
The following diagram shows how the Smalltalk objects instantiated from the classes you just created and
the database tables would be related.

Figure 2.16.4. 1<->1 relationship between ZyxCustomer and ZyxPortfolio in tables CUSTOMER and
PORTFOLIO

Note that table PORTFOLIO has the the FK since ZyxPortfolio was specified as the target object.
Note that the connection between objects is represented in the database by the CUSTOMER PK and the
PORTFOLIO FK match.

DI DIREMOTSUC

1 1

Table: CUSTOMER Table: PORTFOLIO

(PK) (FK)
DIREMOTSUC DI

1 2

(PK)

ZyxCustomer ZyxPortfolio

id

customer
portfolio

id
1

Ta
bl

es

O
bjects

1

Object Behavior Framework User’s Guide
2. Tutorial

2.17. 1<->N relationship 83

2.17. 1<->N relationship
This chapter demonstrates how to implement a 1<->N relationship between 2 classes.

Figure 2.17.1. 1<->N relationship

In this section you will:
• Create classes and variables (create ZyxEmployee, ZyxEmployee>>ownedCustomers, ZyxCus-

tomer>>ownerEmployee).
• Set ZyxEmployee>>ownedCustomers type to ZyxCustomer and ZyxCustomer>>ownerEmployee

type to ZyxEmployee.
• Set cardinality of ZyxEmployee>>ownedCustomers to 1..3 and set cardinality of ZyxCustomer>>owner-

Employee to 1..1.
• Review how the OBF classes and methods you created might be used by PFW.

2.17.1. Create classes and variables.
19.1. Create ZyxPerson subclass ZyxEmployee.
19.2. Create ZyxEmployee>>ownedCustomers.
19.3. Create ZyxCustomer>>ownerEmployee.

2.17.2. Set ZyxEmployee>>ownedCustomers type as 1<->N relationship
19.4. Specify ZyxEmployee>>ownedCustomers as Relationship (checkbox Relationship).
19.5. Specify Source class minimum...maximum as 1..3.
19.6. Specify Target class as ZyxCustomer.
19.7. Specify variable as ownerEmployee.
19.8. Specify Target class minimum...maximum as 1..1.

Figure 2.17.2. ZyxEmployee>>ownedCustomers definition

1
variable (type Source)

1
variable (type Source)

Employee instance

ownedCustomers
(type: Set of Customer instances)

1..3

Set of 1..3 Customer objects

Customer instance

1
ownerEmployee (type Employee)

Object Behavior Framework User’s Guide
2. Tutorial
2.17. 1<->N relationship84

19.9. Display tab Typing for ZyxCustomer>>ownerEmployee.

Figure 2.17.3. ZyxCustomer>>ownderEmployee definition

19.10. Save model.
19.11. Save to VA.

2.17.3. Review how the OBF classes and methods you created can be used by PFW.
The following diagram shows how the Smalltalk objects instantiated from the classes you just created and
the database tables would be related.

Figure 2.17.4. 1<->N relationship between ZyxCustomer ZyxEmployee in tables EMPLOYEE and CUS-
TOMER

Note that table CUSTOMER has the the FK since ZyxCustomer was specified as the target object.
Note that the connection between objects is represented in the database by the EMPLOYEE PK and the
CUSTOMER FK match.

DI DIREMOTSUC

1 1

Table: EMPLOYEE Table: CUSTOMER

(PK)
(FK) (PK)

ZyxEmployee

ZyxCustomer

id

ownerEmployee
ownedCustomers

id

1

D
at

ab
as

e

S
m

alltalk1..3

DIEEYOLPME DI

1 1

1 2

1 3

1
1

Object Behavior Framework User’s Guide
2. Tutorial

2.18. M<->N relationship 85

2.18. M<->N relationship
In this chapter you will create the following M<->N relationship.

Figure 2.18.1. M<->N relationship

In this chapter you will:
• Create classes and variables (create ZyxAddress>>persons).
• Set ZyxPerson>>addresses type to ZyxAddress and ZyxAddress>>persons type to ZyxPerson.
• Set cardinality of ZyxPerson>>addresses to 1..N and set cardinality of ZyxAddress>>persons to 1..10.
• Review how the OBF classes and methods you created would be used by PFW.

2.18.1. Create classes and variables.
19.12. Create ZyxAddress>>persons.

2.18.2. Set ZyxPerson>>addresses type as M<->N relationship
19.13. For ZyxPerson>>addresses: Uncheck Primitive.
19.14. Specify variable as persons.
19.15. Specify Source class minimum...maximum as 1..N.
19.16. Specify Target class minimum...maximum as 1..10.

Figure 2.18.2. ZyxPerson>>addresses definition

Person instance

1..

variable addresses
(type: Set of Address objects)

Set of 1.. Address objects

variable persons
(type: Set of Person objects)

Person instance
variable addresses
(type: Set of Address objects)

Address instance

Address instance
variable persons
(type: Set of Person objects)

Set of 1.. Address objects
Set of 1..10 Person objects

Set of 1..10 Person objects

1..10

1..

1..10

Object Behavior Framework User’s Guide
2. Tutorial
2.18. M<->N relationship86

19.17. Display tab Typing for ZyxAddress>>persons.

Figure 2.18.3. ZyxAddress>>persons definition

19.18. Save model.
19.19. Save to VA.

2.18.3. Review how the OBF classes and methods you created can be used by PFW.
The following diagram shows how the Smalltalk objects instantiated from the classes you just created and
the database tables would be related.

Figure 2.18.4. M<->N relationship between ZyxPerson and ZyxAddress in tables PERSON, RESIDENCE,
and ADDRESS

DINOSREP DISSERDDA

101 102

101 202

201 102

201 202

RESIDENCE

DI

101

201

DI

102

202

ADDRESSPERSON

D
at

ab
as

e

S
m

allttalk

ZyxPerson ZyxAddress

id = 201

persons

addresses

id = 101 1..10

addresses

id = 102

ZyxPerson ZyxAddress

id = 202

persons

S
et

 (
1.

.1
0)

S
et

 (
1.

.1
0)

S
et (1..N

)

S
et (1..N

)

1..N

1..N

1..10

(PK, FK) (PK, FK)

(PK) (PK)

Object Behavior Framework User’s Guide
2. Tutorial

2.18. M<->N relationship 87

For M<->N relationships, a 3rd table is required. In this case, the table is RESIDENCE. Each row in resi-
dence represent a unique pair of source and target objects. Both keys in RESIDENCE are FK and PK.
Note that in table RESIDENT column PERSON ID a number can appear in 1..N rows (a person can have
any number of addresses). However, in column ADDRESSID a number can appear in 1..10 rows (an
address can only have from 1..10 persons).

Object Behavior Framework User’s Guide
2. Tutorial
2.19. 1 context: 1 (non-nested) TrLevel88

2.19. 1 context: 1 (non-nested) TrLevel
In this section you will:
• Create and view (in the Transaction Browser) a non-running, non-active context
• Specify a variable as being transacted (creates the required Framework accessors)
• Assign an object to a variable (with no active context)
• Assign an object to a variable (with an active context)
• Commit TrLevel1
• Abort TrLevel1
• Commit the context
• Abort the context

2.19.1. Cleaning up
During the examples, if at any point you wish to start from scratch, execute the following lines to abort all
transactions in all contexts and remove keys from the system dictionary:
OBF CH 2.19.#1. Commands for cleaning up transactions."
[

MicFwTransactionManager abortAll.
Smalltalk removeKey: #con1 ifAbsent: [].
Smalltalk removeKey: #cus1 ifAbsent: [].
Smalltalk removeKey: #cus2 ifAbsent: [].

]

2.19.2. Create non-running, non-active context
20.1. Create a context and store in the system dictionary:
OBF CH 2.19.#2. Create transaction context"
[

Smalltalk at: #con1 put: MicFwTransactionManager newTransactionContext.
]

The context, having been just created, is:
• Not running. TrLevel1 does not exist (message beginTransactionContext has not been sent to con1

yet).
• Not active. The current context of the transaction manager is not con1 (message activate has not been

sent to con1 yet).

2.19.2.1. Open Transaction Browser
20.2. Open the Transaction Browser:
[

MicFwTransactionsBrowser openBrowser.
]

Figure 2.19.1. Transactions Browser

Note that no transactions are displayed since no transactions are running (ie, with TrLevel1 or higher).

Object Behavior Framework User’s Guide
2. Tutorial

2.19. 1 context: 1 (non-nested) TrLevel 89

Note: The transaction browser can also be opened from the System Transcript menu by selecting mic-
Frameworks / Browse Transactions.

2.19.3. Specify ZyxName>>firstName as transacted
A variable must be specified as transacted (using the OMB) for transacted changes for that variabe. Spec-
ifying the variable as transacted creates the required accessors with transaction support for the variable.
20.3. In the OMB: For ZyxName>>firstName: Check the checkbox Transacted.

Figure 2.19.2. Specifying ZyxName>>firstName as transacted

20.4. Save the model.
20.5. Save to VA.

2.19.4. Assign an object to a variable (with no active context)
Any changes to a transacted variable will not be transacted if no context is running or active.
20.6. Create a new Customer object and assign a name object to the transacted variable "name":
OBF CH 2.19.#3. Non-running, non-active transaction context"
[

Smalltalk at: #cus1 put: ZyxCustomer new.
]
[

cus1 name: ZyxName new.
cus1 name firstName: 'c1FirstNameV1'.

]

20.7. Verify that the context is not running or active:
[

con1 isRunning. "false"
]
[

con1 isActive. "false"
]

20.8. Refresh the Transaction Browser dialog (from the main menu select Transactions / Update) . Note
that there are no running or active contexts.

Figure 2.19.3. No running/active contexts in TB

Object Behavior Framework User’s Guide
2. Tutorial
2.19. 1 context: 1 (non-nested) TrLevel90

2.19.5. Assign an object to a variable (with active context)
2.19.5.1. beginTransaction

20.9. Run and activate context by sending message beginTransaction to context:
OBF CH 2.19.#4. Run / activate context (beginTransaction)"
[

con1 beginTransaction.
con1 isRunning. "true"

]
[

con1 isActive. "true"
]

2.19.5.2. Inspect changes to context, manager
20.10. Refresh the Transaction Browser. Note that 1 transaction context and 1 level are shown. However,
no object version or object aspects are listed.

Figure 2.19.4. Running (TrLevel1) / active ("*") context in TB

2.19.5.3. Example: Running / Active contexts and applications
Typically a context would be created and the beginTransaction message sent to the context when a user
dialog for data entry is being opened.

Figure 2.19.5. Typical dialog for data entry

The context would be:
• Running (the dialog is open).
• Active (the dialog is the active dialog).

2.19.5.4. Assign object to variable
20.11. Assign object to firstName.
OBF CH 2.19.#5. Active context: Assign object to transacted variable."
[

cus1 name firstName: 'cus1FirstNameV2'.
]

2.19.5.5. Object version uncommitted/committed targets in Transaction Browser
20.12. Refresh the Transaction Browser display. An object version for "a ZyxName" is now shown. The
uncommitted target (version value) is shown ('cus1NameFirstV2').

Figure 2.19.6. Uncommitted target (version value) for ZyxName in TB

Edit dialog

Object Behavior Framework User’s Guide
2. Tutorial

2.19. 1 context: 1 (non-nested) TrLevel 91

20.13. Click on Version value. The button becomes Variable value. The committed target (variable
value) is shown ('cus1NameFirstV1').

Figure 2.19.7. Committed target (variable value) for ZyxName in TB

The object version object returns 1 of 2 versions of a target object depending on the context isolation of the
active context in which the getter message was sent. The following diagram illustrates the structure of an
object version:

Figure 2.19.8. Object version

2.19.5.6. Example: Assigning object to transacted variable in active context with
TrLevel1

Typically a context would be created and the beginTransaction message sent to the context when a user
dialog for data entry is being opened.
A typical example of a context with TrLevel1 is the dialog in the following diagram. The characters entered
in the text field become the new string object assigned as the uncommitted target. However, this uncom-
mitted target (’cus1NameFirstV2’) does not become the committed target (’cus1NameFirstV1’) while the
context is not committed.

Figure 2.19.9. Assigning object to transacted variable in active context with TrLevel1: Example dialog

Note: Actually a new uncommitted target would be created each time a character is entered in the above
field.

2.19.6. TrLevel1: Committing
Committing TrLevel1 causes the following:
• The transacted objects become the actual objects assigned to the variables.
• TrLevel1 ceases to exist.
• The context is closed (ceases to exist).
20.14. Commit TrLevel1.
OBF CH 2.19.#6. Committing TrLevel1."
[

con1 commitTransaction.
]
[

cus1 name firstName. "'cus1FirstNameV2'"
]

object version
for sourceObject>>var1
committed target = 'version1'
uncommitted target= 'version2'

Edit dialog

First Name cus1NameFirstV2

Object Behavior Framework User’s Guide
2. Tutorial
2.19. 1 context: 1 (non-nested) TrLevel92

2.19.6.1. Inspect changes to transaction objects
20.15. Refresh the view in Transaction Browser. Note that no transaction variables exist.

Figure 2.19.10. TrLevel1 committed: TB empty

2.19.6.2. Example: Committing TrLevel1
Pressing the OK button in the dialog show below would send the commitTransaction message to the con-
text for the dialog.

Figure 2.19.11. Committing TrLevel1: Example dialog

2.19.7. TrLevel1: Aborting
Aborting TrLevel1 causes the following:
• Any uncommitted targets is object versions assigned to the TrLevel1 are deferenced.
• TrLevel1 ceases to exist.
• The context is closed (ceases to exist).

2.19.7.1. Run / activate context (beginTransaction)
20.16. Run and activate context by sending message beginTransaction to context:
OBF CH 2.19.#7. Aborting TrLevel1
[

con1 beginTransaction.

2.19.7.2. Assign objects to variables
20.17. Create a second Customer instance and assign new objects to both Customer instances.

cus1 name firstName: 'cus1FirstNameV3'.
]

2.19.7.3. Abort the transaction
20.18. Abort the transacted changes:
[

con1 abortTransaction.
]
[

cus1 name firstName. "'cus1FirstNameV2'"
]

2.19.7.4. Example: Aborting TrLevel1
Pressing the CANCEL button in the dialog show below would send the abortTransaction message to the

Edit dialog

OK

First Name cus1NameFirstV2

Customer

Object Behavior Framework User’s Guide
2. Tutorial

2.19. 1 context: 1 (non-nested) TrLevel 93

context for the dialog.

Figure 2.19.12. Aborting TrLevel1: Example dialog

2.19.8. Committing a single-level context
Committing a context has exactly the same effect as committing TrLevel1.
20.19. Run and activate context by sending message beginTransaction to context:
OBF CH 2.19.#8. Committing a context
[

con1 beginTransaction.

20.20. Assign objects to variables.
cus1 name firstName: 'cus1FirstNameV4'.

20.21. A context is committed with the commitTransaction message.
con1 commitTransaction.

]

2.19.9. Aborting a single-level context
Aborting a context has exactly the same effect as aborting TrLevel1.
20.22. Begin transaction and assign objects:
OBF CH 2.19.#9. Aborting a context
[

con1 beginTransaction.

20.23. Create a second Customer instance and assign new objects to both Customer instances.
cus1 name firstName: 'cus1FirstNameV5'.

20.24. A context is aborted with the abortTransaction message.
con1 abortTransaction.

]

Edit dialog

CANCEL

First Name cus1NameFirstV4

Customer

Object Behavior Framework User’s Guide
2. Tutorial
2.20. 1 context: Multiple (nested) TrLevels94

2.20. 1 context: Multiple (nested) TrLevels
In this section you will:
• Create a context with 2 transaction levels
• Abort TrLevel2
• Abort all TrLevels (same as aborting context)
• Commit TrLevel2
• Commit all TrLevels (same as committing context)
• Abort context
• Commit context

2.20.1. Create context, TrLevel1, TrLevel2
21.1. Specify ZyxName>>lastName as Transacted.
21.2. Save the model.
21.3. Save to VA.
21.4. Create a context with 2 TrLevels. TrLevel1 has 1 object version, TrLevel2 has 2 object versions:
OBF CH 2.20.#1. Create context with 2-levels."
[

cus1 name: ZyxName new.
cus1 name firstName: 'c1FirstNameTL0'.
cus1 name lastName: 'c1LastNameTL0'.
con1 beginTransaction.
cus1 name firstName: 'c1FirstNameTL1'.
con1 beginTransaction.
cus1 name firstName: 'c1FirstNameTL2'.
cus1 name lastName: 'c1LastNameTL2'.

]

2.20.1.1. Inspect changes to transaction objects
21.5. Refresh the view in Transaction Browser.

Figure 2.20.1. 2 TrLevels in TB

2.20.1.2. Example: 2 TrLevels
The code above could represent the situation show in the following diagram:

Figure 2.20.2. 2 TrLevels: Example dialogs.

The context would be created and the first beginTransaction message would be sent when the first dialog
is opened. The second beginTransaction message would be sent when the second dialog is opened. The

Edit first name dialog (TrLevel1)

First Name cus1NameFirstV1

Edit full name Edit full name dialog (TrLevel2)

First Name cus1NameFirstV2

Last Name cus1NameLastV2

Object Behavior Framework User’s Guide
2. Tutorial

2.20. 1 context: Multiple (nested) TrLevels 95

firstName: and lastName: messages would be sent when text is entered in the text fields.
Note: The assignment of an object can only be recorded in the object version in the highest TrLevel. This
is equivalent to saying that data can be entered only in the the last sub-dialog opened.

2.20.2. Abort highest level (TrLevel2)
21.6. Abort TrLevel2 by sending the abortTransaction message to the context:
OBF CH 2.20.#2. Abort TrLevel2 of 2-level context."
[

con1 abortTransaction.
]

21.7. Check the objects referenced by variables:
[

cus1 name firstName "c1NameFirstTL1"
]
[

cus1 name lastName "c1NameLastTL0"
]

2.20.2.1. Inspect changes to transaction objects
21.8. Refresh the view in Transaction Browser. Note that only TrLevel1 exists.

Figure 2.20.3. 1 TrLevel in TB

2.20.2.2. Example: Abort highest level (TrLevel2)
The code above could represent pressing the CANCEL button:

Figure 2.20.4. Aborting highest TrLevel: Example dialogs.

The changes that were entered in the TrLevel2 dialog would be lost.

2.20.3. 2-level transaction: Abort all TrLevels
21.9. Create TrLevel2 and abort both levels:
OBF CH 2.20.#3. Abort all levels of 2-level context."
[

con1 beginTransaction.
cus1 name firstName: 'c1FirstNameTL3'.
cus1 name lastName: 'c1LastNameTL3'.
con1 abortToTop.

]

Edit first name dialog (TrLevel1)

First Name cus1NameFirstV1

Edit full name Edit full name dialog (TrLevel2)

First Name cus1NameFirstV2

Last Name cus1NameLastV2

CANCEL

X

Object Behavior Framework User’s Guide
2. Tutorial
2.20. 1 context: Multiple (nested) TrLevels96

2.20.3.1. Inspect changes to transaction objects
21.10. Refresh the view in Transaction Browser. Note that no TrLevels exist.

Figure 2.20.5. No TrLevels in TB

2.20.3.2. Example: Abort all levels
The code above could represent pressing the CANCEL ALL button as shown in the following diagram:

Figure 2.20.6. Aborting all TrLevels: Example dialogs.

The changes that were entered in the dialogs would be lost.

2.20.4. Commit highest level (TrLevel2)
21.11. Create object version and 2 TrLevels:
OBF CH 2.20.#4. Create context with 2-levels."
[

cus1 name: ZyxName new.
cus1 name firstName: 'c1FirstNameTL0'.
cus1 name lastName: 'c1LastNameTL0'.
con1 beginTransaction.
cus1 name firstName: 'c1FirstNameTL1'.
con1 beginTransaction.
cus1 name firstName: 'c1FirstNameTL2'.
cus1 name lastName: 'c1LastNameTL2'.

]

21.12. Commit TrLevel2 by sending the commitTransaction message to the context:
OBF CH 2.20.#5. Commit TrLevel2 of 2-level context."
[

con1 commitTransaction.
]

2.20.4.1. Inspect changes to transaction objects
21.13. Check the objects referenced by variables:
[

cus1 name firstName "c1NameFirstTL2"
]
[

cus1 name lastName "c1NameLastTL2"
]

Edit first name dialog (TrLevel1)

First Name cus1NameFirstV1

Edit full name Edit full name dialog (TrLevel2)

First Name cus1NameFirstV3

Last Name cus1NameLastV3

CANCEL ALL

X
X

Object Behavior Framework User’s Guide
2. Tutorial

2.20. 1 context: Multiple (nested) TrLevels 97

21.14. Refresh the view in Transaction Browser. Note that only TrLevel1 exists. The version value for first-
Name is 'c1FirstNameTL2'. The variable value, however, is still 'c1FirstNameTL0'.

Figure 2.20.7. 1 TrLevel in TB

2.20.4.2. Example: Commit highest level (TrLevel2)
The code above could represent pressing the OK button:

Figure 2.20.8. Committing highest TrLevel: Example dialogs.

The objects that were assigned to variables in TrLevel1 would be lost if objects were written to the same
variables in TrLevel2.

2.20.5. 2-level transaction: Commit all TrLevels
21.15. Create TrLevel2 and commit both levels:
OBF CH 2.20.#6. Commit all levels of 2-level context."
[

con1 beginTransaction.
cus1 name firstName: 'c1FirstNameTL3'.
cus1 name lastName: 'c1LastNameTL3'.
con1 commitToTop.

]

2.20.5.1. Inspect changes
21.16. Check the objects referenced by variables:
[

cus1 name firstName "c1NameFirstTL3"
]
[

cus1 name lastName "c1NameLastTL3"
]

Edit first name dialog (TrLevel1)

First Name cus1NameFirstV2

Edit full name Edit full name dialog (TrLevel2)

First Name cus1NameFirstV2

Last Name cus1NameLastV2

OK

Object Behavior Framework User’s Guide
2. Tutorial
2.20. 1 context: Multiple (nested) TrLevels98

21.17. Refresh the view in Transaction Browser. Note that no transaction contexts exist.

Figure 2.20.9. No transaction contexts in TB

2.20.5.2. Example: Commit all levels
The code above could represent pressing the ACCEPT ALL button as shown in the following diagram:

Figure 2.20.10. Committing all TrLevels: Example dialogs

The uncommitted objects assigned to the variables would become the actual (committed) objects. Thus,
the latest changes entered in the dialogs would be confirmed.

2.20.6. Aborting a multi-level context
Aborting a multi-level context has exactly the same effect as aborting all TrLevels.

2.20.7. Committing a multi-level context
Committing a multi-level context has exactly the same effect as committing all TrLevels.

Edit first name dialog (TrLevel1)

First Name cus1NameFirstV2

Edit full name Edit full name dialog (TrLevel2)

First Name cus1NameFirstV2

Last Name cus1NameLastV2

ACCEPT ALL

Object Behavior Framework User’s Guide
2. Tutorial

2.21. Multiple contexts: Concurrent 99

2.21. Multiple contexts: Concurrent
In this section you will:
• Create 2 concurrent contexts in model uncommittedRead
• Check the objects returned by variable accessors
• Create 2 concurrent contexts in model isolate
• Check the objects returned by variable accessors
• Attempt to change a variable locked by another context

2.21.1. Create 2 (concurrent) contexts; mode uncommitedRead (default)
2.21.1.1. Create contexts

22.1. Create 2 contexts:
OBF CH 2.21.#1. Create 2 contexts."
[

Smalltalk at: #con1 put: MicFwTransactionManager newTransactionContext.
Smalltalk at: #con2 put: MicFwTransactionManager newTransactionContext.

]
[

cus1 name: ZyxName new.
cus1 name firstName: 'c1FirstNameV0'.
cus1 name lastName: 'c1LastNameV0'.
con1 beginTransaction.
cus1 name firstName: 'c1FirstNameCon1V1'.
con2 beginTransaction.

cus1 name lastName: 'c1LastNameCon2V1'.
]

2.21.1.2. Inspect changes
22.2. Check the objects referenced by variables:
[

cus1 name firstName "c1FirstNameCon1V1"
]
[

cus1 name lastName "c1LastNameCon2V1"
]

22.3. Refresh the view in Transaction Browser. Note that 2 contexts exist.

Figure 2.21.1. 2 contexts in TB

Note the following:

Object Behavior Framework User’s Guide
2. Tutorial
2.21. Multiple contexts: Concurrent100

• Both contexts are running in uncommitedRead mode (described later).
• con2 is active (con2 began after con1; only 1 context can be active)

2.21.1.3. Example: 2 concurrent contexts
The code above could represent the situation show in the following diagram:

Figure 2.21.2. 2 concurrent contexts in uncommitedRead mode: Example dialogs

Note that both contexts show the transacted object referenced by the variables.

2.21.2. 2 concurrent contexts; mode isolate
2.21.2.1. Change the mode of the contexts

22.4. Change the mode of the contexts:
OBF CH 2.21.#2. Change mode of contexts to isolated."
[

con1 isolate.
con2 isolate.

]

2.21.2.2. Inspect changes
22.5. Check the objects referenced by variables:
[

con1 activate.
cus1 name firstName "c1FirstNameCon1V1"

]
[

cus1 name lastName "c1LastNameV0"
]
[

con2 activate.
cus1 name firstName "c1FirstNameV0"

]
[

cus1 name lastName "c1LastNameCon2V1"
]

22.6. Refresh the view in Transaction Browser. Note that the only change in the browser is the designa-
tion of the contexts as isolated.

Figure 2.21.3. Designation of isolated mode in the TB status bar for a context

Note the following:
• In isolated mode: A context only sees changes that were made while the context was active.

Edit name (context con1)
mode: uncommitedRead

First Name cus1FirstNameCon1V1

Last Name cus1LastNameCon2V1

Edit name (context con2)
mode: uncommitedRead

First Name cus1FirstNameCon1V1

Last Name cus1LastNameCon2V1

First Name cus1FirstNameV0

Last Name cus1LastNameV0

(actual value)

(actual value)

Change in con1 dialog:
change displayed in con2 dialog

Change in con2 dialog:
change displayed in con1 dialog

Object Behavior Framework User’s Guide
2. Tutorial

2.21. Multiple contexts: Concurrent 101

2.21.2.3. Example: Isolated mode
The code above could represent the situation show in the following diagram:

Figure 2.21.4. 2 concurrent contexts in isolated mode: Example dialogs

2.21.3. Attempt to change variable in context that is locked by other context
A context cannot change a variable that is locked by a concurrent context.
22.7. Attempt to change a variable locked by another context.
[

con2 activate.
cus1 name firstName: ’xxx'. "exception: Transaction write conflict."

]
[

con1 activate.
cus1 name lastName: ’xxx'. "exception: Transaction write conflict."

]

2.21.3.1. Example: Attempt to change variable in parent or sibling that is locked by
other context

The code above could represent the situation show in the following diagram:

Figure 2.21.5. Unallowed changes to locked variables in concurrent contexts: Example dialogs

Edit name (context con1)
mode: isolated

First Name cus1FirstNameCon1V1

Last Name cus1LastNameV0

Edit name (context con2)
mode: isolated

First Name cus1FirstNameV0

Last Name cus1LastNameCon2V1

First Name cus1FirstNameV0

Last Name cus1LastNameV0

(actual value)

(actual value)

Change in con1 dialog:
change not displayed in con2 dialog

Change in con2 dialog:
change not displayed in con1 dialog

X

X

Edit name (context con1)
mode: isolated

First Name c1FirstNameCon1V1

Last Name

Edit name (context con2)
mode: isolated

First Name xxx

Last Name c1LastNameCon2V1

X
xxxX

Object Behavior Framework User’s Guide
2. Tutorial
2.22. Multiple contexts: Parent / Child102

2.22. Multiple contexts: Parent / Child
In this chapter you will:
• Create a context with a child and a grandchild contexts
• Test in uncommittedRead and isolate modes for a parent / child
• Analyze how a variable lock can be transferred

2.22.1. Context and 2 child contexts (child and grandchild)
2.22.1.1. Create contexts

23.1. Create context and 2 child contexts:
OBF CH 2.22.#1. Create child and grandchild context for con1."
[

con1 abort.
con2 abort.

]
[

Smalltalk at: #con11 put: con1 newTransactionContext.
]
[

Smalltalk at: #con111 put: con11 newTransactionContext.
]
[

cus1 name: ZyxName new.
cus1 name firstName: 'c1FirstNameV0'.
cus1 name lastName: 'c1LastNameV0'.
con1 beginTransaction.
cus1 name firstName: 'c1FirstNameCon1V1'.
cus1 name lastName: 'c1LastNameCon1V1'.
con11 beginTransaction.
con111 beginTransaction.
cus1 name lastName: 'c1LastNameCon111V2'.

]

Object Behavior Framework User’s Guide
2. Tutorial

2.22. Multiple contexts: Parent / Child 103

2.22.1.2. Inspect changes
23.2. Refresh the view in Transaction Browser. Note that 3 contexts exist.

Figure 2.22.1. Parent, child, grandchild contexts in TB

2.22.1.3. Example: Parent, child, grandchild context
The code above could represent the situation show in the following diagram:

Figure 2.22.2. Parent context with child, grandchild contexts: Example dialogs

Edit name (parent context con1)

First Name cus1FirstNameCon1V1

Last Name cus1LastNameCon1V1

Open child context

cus1FirstNameV0
cus1LastNameV0

Edit name (child context con11)

First Name cus1FirstNameCon1V1

Last Name cus1LastNameCon1V1

Open child context

Edit name (child context con111)

First Name cus1FirstNameCon1V1

Last Name cus1LastNameCon111V2

Object Behavior Framework User’s Guide
2. Tutorial
2.22. Multiple contexts: Parent / Child104

2.22.2. Test in uncommittedRead and isolate modes for a parent / child
2.22.2.1. uncommittedRead when variable locked by non-active parent

23.3. Set con11 to uncommitedRead and then test the value returned for firstName (locked by con1):
OBF CH 2.22.#2. uncommitedRead when var locked by non-active parent."
[

con11 uncommittedRead.
con11 activate.
cus1 name firstName "c1FirstNameCon1V1".

]

2.22.2.2. uncommittedRead when variable locked by non-active child
23.4. Test the value returned for lastName (locked by con111):
OBF CH 2.22.#3. uncommitedRead when var locked by non-active child."
[

cus1 name lastName "c1LastNameCon111V2".
]

2.22.2.3. isolated read variable locked by non-active parent
23.5. Set con11 to isolated and then test the value returned for firstName (locked by con1):
OBF CH 2.22.#4. isolated read when var locked by non-active parent."
[

con11 isolate.
cus1 name firstName "c1FirstNameCon1V1".

]

2.22.2.4. isolated read when variable locked by non-active child
23.6. Test the value returned for lastName (locked by con111):
OBF CH 2.22.#5. isolated read when var locked by non-active child."
[

cus1 name lastName " 'c1LastNameCon1V1'".
]

2.22.2.5. Example: Parent, child, grandchild context with uncommitted, isolated read
The code above could represent the situation show in the following diagram:

Figure 2.22.3. Parent context with child, grandchild contexts: uncommittedRead, isolated example dialogs

Edit name (parent context con1)

First Name cus1FirstNameCon1V1

Last Name cus1LastNameCon1V1

Open child context

cus1FirstNameV0
cus1LastNameV0

Edit name (child context con11)

First Name cus1FirstNameCon1V1

Last Name

Open child context

Edit name (child context con111)

First Name cus1FirstNameCon1V1

Last Name cus1LastNameCon111V2

uncommittedRead

Edit name (child context con11)

First Name cus1FirstNameCon1V1

Last Name cus1LastNameCon1V1

Open child contextisolated
cus1LastNameCon111V2

X

Object Behavior Framework User’s Guide
2. Tutorial

2.22. Multiple contexts: Parent / Child 105

2.22.3. Analyze how a variable lock can be transferred
2.22.3.1. Transfer of variable lock to child

23.7. Modify firstName in con11:
OBF CH 2.22.#6. Transfer variable lock from con1 to con11."
[

con11 activate.
cus1 name firstName: ’c1FirstNameCon11V2'.
con1 activate.
cus1 name firstName: ’xxx’ "transaction write conflict exception".

]

2.22.3.2. No transfer of variable lock to parent
23.8. Attempt to modify lastName in con11:
OBF CH 2.22.#7. No transfer variable lock from con111 to con11."
[

con11 activate.
cus1 name lastName: ’xxx’ "transaction write conflict exception".

]

2.22.3.3. Examples: Transfer of variable lock
The code above could represent the situation show in the following diagram:

Figure 2.22.4. Transfer of variable locks between parent and child contexts

Edit name (parent context con1)

First Name cus1FirstNameCon1V1

Last Name cus1LastNameCon1V1

Open child context

cus1FirstNameV0
cus1LastNameV0

firstName var lock

Edit name (child context con11)

First Name cus1FirstNameCon11V2

Last Name

Open child context

Edit name (child context con111)

First Name cus1FirstNameCon1V1

Last Name cus1LastNameCon111V2

cus1LastNameCon111V2

X
lastName var lock

X

Object Behavior Framework User’s Guide
2. Tutorial
2.22. Multiple contexts: Parent / Child106

Object Behavior Framework User’s Guide
3. Tools

107

3
Tools

Object Behavior Framework User’s Guide
3. Tools

108

Object Behavior Framework User’s Guide
3. Tools

3.1. Introduction 109

3.1. Introduction
This part of the User’s Guide describes the visual tools of OBF. It includes overviews and short examples
that demonstrate the functionality of each element in each tool.
The described tools include:
• ‘3.2. Object Model Browser (OMB)’ (page 110).
• ‘3.3. Object Net Browser (NetBrowser)’ (page 119)
• ‘3.4. Type Editor’ (page 124)
• ‘3.5. Relationship Editor’ (page 125)
• ‘3.6. Transaction Browser’ (page 127)

Object Behavior Framework User’s Guide
3. Tools
3.2. Object Model Browser (OMB)110

3.2. Object Model Browser (OMB)

3.2.1. Primary functions
The primary functions of OMB include:
• Creating an Object Model
• Adding/deleting classes/variables to the model
• Specifying default attributes for classes/variables
• Exporting a model to other formats (.st, .xml)
• Importing/saving a model to VA
• Specifying variable typing/relationships

3.2.2. Opening OMB
3.2.2.1. From Transcript menu

Note: When opening from the System Transcript menu, the OMB must be opened on a class (OMB cannot
be simply opened without specifying a class). To open a model file (.ome) in the OMB, simply open the
OMB on any class and then open the model file from within OMB.
2.1. In the System Transcript: Select micFrameworks / Open Object Model Browser....
2.2. In response to the message "Select root class":

2.2.1 Enter the name of a class that is in the Object Net.
2.2.2 Click OK.
OR
2.2.3 Click OK. A list of available classes is displayed (the displayed classes are all subclasses of
MicFwDomainObject).
2.2.4 Double-click on a class in the list.

The OMB dialog appears:

Figure 3.2.1. OMB dialog (opened on class Model1Class1 from the Transcript menu)

3.2.2.2. From transcript (Smalltalk)
2.3. Execute the following line in a transcript window:

MicFwTemModelDesriptionProcess open

The OMB dialog appears (without an object net):

Figure 3.2.2. OMB dialog (opened with MicFwTemModelDescriptionProcess open)

Object Behavior Framework User’s Guide
3. Tools

3.2. Object Model Browser (OMB) 111

3.2.3. OMB dialog
The following shows the major parts of the OMB dialog.

Figure 3.2.3. Major parts of the OMB dialog

3.2.3.1. Main menu submenus
3.2.3.1.1. Submenu Model

Figure 3.2.4. Submenu Model

3.2.3.1.1.1. Model / New model...
Closes the open model (prompts to save if not saved.
Prompts for the name of the new model (the model will be saved as name.ome).
Opens the new (empty) model in OMB.
3.2.3.1.1.2. Model / Open model... Ctrl+O
Closes the open model (prompts to save if not saved.
Opens the Open file... dialog for selecting an .ome file.
3.2.3.1.1.3. Model / Rename model...
Prompts for the new name of the model open in the OMB.
3.2.3.1.1.4. Model / Validate model...
Validates (checks for errors) the ExtendedDescriptions for the classes in the model.
3.2.3.1.1.5. Model / Discard all changes Ctrl+D
Validates (checks for errors) the ExtendedDescriptions for the classes in the model.
3.2.3.1.1.6. Model / Save model... Ctrl+S
Saves the model to an .ome file. Note: If the .ome file already exists, a prompt appears asking whether or
not to overwrite the file.
3.2.3.1.1.7. Model / Save to VA
Saves the the Smalltalk content of the model (classes, variables, relationships, variable typing, etc.) to the
Smalltalk image.
Note: The following can be saved:

List (tree)

List of variables for selected class

of classes
in the
classes net

Class / variable settings

Language (Smalltalk / Java)

Name of the model in OMB

Main menu

Toolbar

Object Behavior Framework User’s Guide
3. Tools
3.2. Object Model Browser (OMB)112

• The entire contents of the model.
• Only the changes since the model was last saved to VA.
This is set by selecting Options / Preferences and then tab Save.
3.2.3.1.1.8. Model / Save to file...
Opens a Save to... dialog. Clicking OK will then save the specification for each class to a .st file (with the
same name as the name of the class).
3.2.3.1.1.9. Model / Tools / Generate XML
Opens a Save to... dialog. Clicking OK will then save the specification for all classes to a single .xml file.
3.2.3.1.1.10. Model / Tools / Model -> POM generator
This menu item is only applicable when using Java.
3.2.3.1.1.11. Model / Close Ctrl-Q
Closes the OMB.
Note: If there are unsaved changes in the model: The Save to... dialog appears for saving the model.

3.2.3.1.2. Submenu Class

Figure 3.2.5. Submenu Class

The Class menu can also be opened as a context menu by right-clicking in the class list subdialog.
3.2.3.1.2.1. Class / New class... Ctrl+N
Creates a subclass for the class currently selected. Opens the Class specification dialog for entering
required and optional information about the new class (class name, etc.)
3.2.3.1.2.2. Class / Add class net... Ctrl+A
Opens the Information required dialog. In response:
• Enter the name of a class that is in the Object Net.
• Click OK.

OR
• Click OK. A list of available classes is displayed (the displayed classes are all subclasses of MicFwDo-

mainObject).
• Double-click on a class in the list.
3.2.3.1.2.3. Class / Add class(es)
Opens the Information required dialog. In response:
• Enter the name of a class that should be added to the model.
• Click OK.

OR
• Click OK. A list of available classes is displayed (the displayed classes are all subclasses of MicFwDo-

mainObject which are NOT already in the model).
• Double-click on a class in the list.
3.2.3.1.2.4. Class / Remove class Ctrl+R
Removes the currently selected class from the model.
Note: If the selected class has subclasses in the model: The subclasses must be deleted before the class
can be deleted.
3.2.3.1.2.5. Class / Class specification... Ctrl+P

Object Behavior Framework User’s Guide
3. Tools

3.2. Object Model Browser (OMB) 113

Opens the Class specification dialog for the selected class:

Figure 3.2.6. Class specification dialog

3.2.3.1.2.6. Class / Find class... Ctrl+F
Opens the Information required dialog. In response:
• Enter the name of a class that should be found in the model.
• Click OK.

OR
• Click OK. A list of all classes in the model is displayed.
• Double-click on a class in the list.
3.2.3.1.2.7. Class / Type class
Used for specifying the parent class of a class that has been imported from Java.

3.2.3.1.3. Submenu Variable

Figure 3.2.7. Submenu Variable

The Variable menu can also be opened as a context menu by right-clicking in the variable list subdialog.
3.2.3.1.3.1. Variable / Add variable... Alt+A
Opens the Information required dialog. In response
• Enter the name of a class that is in the Object Net.
• Click OK.
A variable with the name is created for the class.
3.2.3.1.3.2. Variable / Remove variable Alt+R
Deletes the selected variable from the class.
Note: If this option is greyed out: The selected variable is an inherited variable.
3.2.3.1.3.3. Variable / Redefine Variable
The selected inherited variable is redefined (the variable is defined for the class (no longer inherited)).
3.2.3.1.3.4. Variable / Remove redefine Variable
The definition in the selected class for the selected variable is removed. The variable is now defined by the
definition in the parent class.
3.2.3.1.3.5. Variable / Make virtual variable
The selected variable is created for the class without creating the Frameworks accessor methods.
Note: A variable can be made virtual only if the variable is:
• Not redefined in any subclasses.
• Not defined in any parent class.
3.2.3.1.3.6. Variable / Go to target class
The target class for the variable is selected.
3.2.3.1.3.7. Variable / Show inherited variable
If not checked: Inherited variables are not displayed.

Object Behavior Framework User’s Guide
3. Tools
3.2. Object Model Browser (OMB)114

Note: Redefined variables are displayed.

3.2.3.1.4. Submenu Options

Figure 3.2.8. Submenu Options

3.2.3.1.4.1. Options / Java
If checked: The OMB options are set for Java.
3.2.3.1.4.2. Options / Smalltalk
If checked: The OMB options are set for Smalltalk.
3.2.3.1.4.3. Options / View / Toolbar
If checked: The toolbar is displayed.
3.2.3.1.4.4. Options / View / Statusbar
If checked: The status bar is displayed.
3.2.3.1.4.5. Options / Preferences...
Opens the Options dialog.

3.2.3.1.5. Submenu ?

Figure 3.2.9. Submenu ?

3.2.3.1.5.1. ? / About...
Displays information about PMS Micado.

3.2.3.2. Toolbar

Figure 3.2.10. OMB Toolbar

3.2.3.2.1. New Model

Same as menu selection Model / New model....

3.2.3.2.2. Open Model

Same as menu selection Model / Open model....

3.2.3.2.3. Add class net

Same as menu selection Class / Add class net....

3.2.3.2.4. Validate Model

Same as menu selection Model / Validate model.

3.2.3.2.5. Find class

Same as menu selection Class / Find class....

3.2.3.2.6. Discard all changes

Same as menu selection Model / Discard all changes.

3.2.3.2.7. Save to file

Same as menu selection Model / Save to file....

Object Behavior Framework User’s Guide
3. Tools

3.2. Object Model Browser (OMB) 115

3.2.3.2.8. Save to VA

Same as menu selection Model / Save to VA.

3.2.3.2.9. New class

Same as menu selection Class / New class....

3.2.3.2.10. Open class specification

Same as menu selection Class / Class specification....

3.2.3.2.11. Remove class

Same as menu selection Class / Remove class.

3.2.3.2.12. Add new variable

Same as menu selection Variable / Add variable....

3.2.3.2.13. Redefine variable

Same as menu selection Variable / Redefine variable.

3.2.3.2.14. Remove variable

Same as menu selection Variable / Remove variable.

3.2.3.2.15. Options

Same as menu selection Options / Preferences....

3.2.3.2.16. Info

Same as menu selection ? / About.

3.2.3.3. Class tree
The class tree displays all objects in the object net in the model.

Figure 3.2.11. OMB classes tree

3.2.3.4. Variable list
The variable list display all variables for the selected class.

Figure 3.2.12. OMB variable list

3.2.3.5. Tab Variable
Tab Variable contains the following:
• Entry field for the name of the variable
• Checkbox for specifying if the variable is a simple type or relationship
• Drop-down list for selecting the TypeConverter.
• Checkbox for specifying if the variable is transacted.

Object Behavior Framework User’s Guide
3. Tools
3.2. Object Model Browser (OMB)116

• Checkbox for specifying if the variable type should be automatically converted and validated.

Figure 3.2.13. OMB tab Variable

3.2.3.6. Tab Typing (not relationship)
Tab Typing (not for relationship) contains the following:
• Drop-down list for selecting the type of the variable
• Other fields for specifying available properties of the selected type

Figure 3.2.14. OMB tab typing (not relationship)

3.2.3.7. Tab Typing (relationship)
Tab Typing (for relationship) contains the following:
• Source class minimum and maximum selection fields. This specifies the minimum and maximum

number of target class objects that can be referenced by the Source class variable.
• Checkbox Primitive for specifying a primitive relationship.
• Checkbox Monitor target for specifying if the target should be monitored.
• Checkbox Persistent for specifying if the source variable is persistent.
• Drop-down list for selecting the Target class.
• If the relationship is not primitive: Drop-down list for selecting the target class variable.
• Target class minimum and maximum selection fields. This specifies the minimum and maximum num-

ber of source class objects that can be referenced by the Target class variable.

Figure 3.2.15. OMB tab typing (relationship)

3.2.3.8. Tab Accessors
Tab Accessors contains the following:

Object Behavior Framework User’s Guide
3. Tools

3.2. Object Model Browser (OMB) 117

• Comboboxes for specifying the names of the framework accessors for a variable

Figure 3.2.16. OMB tab Accessors

3.2.3.9. Tab Properties
Tab Properties contains the following:
• Radiobutton groups for specifying the values of variable properties

Figure 3.2.17. OMB tab Properties

3.2.3.10. Status bar
The Status bar contains the following:
• The class name.
• Smalltalk or Java (development environment)

Figure 3.2.18. OMB Status bar

3.2.3.11. Options dialog
3.2.3.12. Tab Accessor prefixes

The Options Tab Accessor prefixes contains the following:
• Comboboxes for specifying the accessor default prefixes
• A checkbox for specifying that the names of all accessors should be changed to match the prefixes

Figure 3.2.19. OMB dialog Options tab Accessor prefixes

3.2.3.13. Tab Language
The Options Tab Language contains the following:
• A radiogroup for selecting the language of the environment

Object Behavior Framework User’s Guide
3. Tools
3.2. Object Model Browser (OMB)118

Figure 3.2.20. OMB dialog Options tab Language

3.2.3.14. Tab Save
The Options Tab Save contains the following:
• A radio group for specifying what is saved when saving to VA (Save changes will cause only those

changes to be saved to VA that are new since the model was last saved to VA).

Figure 3.2.21. OMB dialog Options tab Save

3.2.3.15. Tab Defaults
The Options Tab Defaults contains the following:
• An entry field for specifying the Default application
• A radio group for specifying if a new class will be by default subclassed from MicFwDomainObject or

from the class currently selected in the OMB
• Checkbox for specifying that all classes in the model be set to the default

Figure 3.2.22. OMB dialog Options tab Defaults

Object Behavior Framework User’s Guide
3. Tools

3.3. Object Net Browser (NetBrowser) 119

3.3. Object Net Browser (NetBrowser)

3.3.1. Primary functions
The primary functions of the Net Browser are:
• Display a class’s object net.
• Add/delete variables in a class.
• Specify a type or relationship for a class variable.
• Verify the validity of a variable’s ExtendedDecription.
• Specify if a variable is a key.
• Specify is the variable type is automatically validated.
• Specify if the variable supports transaction/persistence.
Note: The Net Browser can only be opened on subclasses of MicFwApplicationObject.

3.3.2. Opening the Net Browser:
3.3.2.1. From the System Transcript menu

2.1. In the System Transcript: Select micFrameworks / Browse Object Net....
2.2. In response to the message "Select root class": Enter MicFwTutorialIdentifiedObject.
2.3. Click OK.
The NetBrowser window is opened:

Figure 3.3.1. Object Net Browser dialog

3.3.2.2. From a Transcript window
2.4. Execute the following line in a transcript window:
OBF CH Open Net Browser.

MicFwNetBrowser openBrowser

3.3.3. Classes window
The classes window list all classes and subclasses in the object net.

3.3.3.1. Add MicFwTutorialIdentifiedObject subclasses
2.5. Add MicFwTutorialIdentifiedObject subclasses AaaClass1 and AaaClass2 (as shown earlier in this
manual).
2.6. Refresh the classes window display by clicking on the plus sign to the left of "MicFwTutorialIdenti-
fiedObject".
Note that the 2 new classes are displayed in the Net Browser, since they were subclassed from MicFwTu-
torialIdentifiedObject.

3.3.4. Net Browser submenu Class
2.7. Display the Class submenu by clicking on Class in the menu OR by right-clicking the mouse in the

Classes window Variable parameters checkboxes
Variables window

Object Behavior Framework User’s Guide
3. Tools
3.3. Object Net Browser (NetBrowser)120

classes window

Figure 3.3.2. ONB: Submenu Class

3.3.4.1. Find Alt+F
Find a class listed in the classes window.
2.8. Right click in the classes window.
2.9. Select Find.

3.3.4.2. Browse...
Browse a class listed in the classes window
2.10. Select a class in the classes window.
2.11. Right click in the classes window.
2.12. Select Browse.

3.3.4.3. Browse another net Ctrl+B
Browse a different object net
2.13. Right click in the classes window.
2.14. Select Browse another net.
2.15. In respone to "Select root class": Enter the root class of the net you want to view.

3.3.4.4. Validate Descriptions
Validate ExtendedDescription for variables of all classes in the displayed net. This is not necessary if all
changes to instance variable definitions were carried out within the the framework (Net Browser). However,
if manual (ie, without using the Net Browser) changes are made, mistakes can occur. Therefore, if there is
any doubt about the validity of the variable descriptions, the descriptions should be verified. To do this:
2.16. Right click in the classes window.
2.17. Select Validate descriptions.

3.3.4.5. Reset classes...
This option remove any unsaved changes for the selected class(es). Important: If a variable is deleted
and the change was not saved, resetting the classes will not restore the variable.
2.18. In the classes window: Select AaaClass1.
2.19. Click on id.
2.20. Uncheck the checkbox Key.
2.21. In response to the question: "Do you want to redefine the description...": Click Yes. Note that id is
now displaed with a black font, since it is no longer inherited from a superclass.
2.22. Right click in the classes window.
2.23. Select Reset Classes.
2.24. A list of all classes which have unsaved changes is displayed. Double-click on AaaClass1.
Note that the changes have been removed.

3.3.4.6. Reset all classes... Alt+C
Similar to Reset classes..., except that all unsaved changes in all classes are removed without prompting
for the class names.

3.3.4.7. Save Ctrl+S
Saves all changes that have been made since the last change.
Important: The display in Net Browser does not reflect the actual status of the objects. Although changes
are displayed in the Net Browser without saving, no changes are implemented until saved.

Disabled since no classes have been changed.

Object Behavior Framework User’s Guide
3. Tools

3.3. Object Net Browser (NetBrowser) 121

3.3.5. Net Browser submenu Variable
2.25. Display the Variable submenu by clicking on Variable in the menu OR by right-clicking the mouse in
the variables window

Figure 3.3.3. ONB: Submenu Variable

3.3.5.1. Add Instance Variable Alt+I
Add an instance variable within the framework for the class selected in the classes window.
2.26. In the classes window: Select AaaClass1.
2.27. Right-click in the variables window.
2.28. Select Add Instance Variable.
2.29. Enter class1var1 as the variable name.
2.30. Click OK.
Note that the new variable is displayed in the variables window.

3.3.5.2. Set type Alt+T
Specify instance variable type as simple type.
2.31. Select class1var1.
2.32. Right click in the variables window. Note the enabled options in the menu:

Figure 3.3.4. ONB pop-up dialog: Setting variable type

2.33. Select Set Type. The Type Editor on <class1var1> is opened (the Type Editor will be explained in
detail later in this part).
2.34. Double-click on Integer.
Note in the variables window that the type is now "Integer".

3.3.5.3. Remove Typing Alt+M
2.35. Select class1var1.
2.36. Right click in the variables window. Note the enabled options in the menu:

Only available option if no variables selected.

Specify the variable type as a simple type (Integer, Date, etc.).
Specify the variable type as a relationship.

Remove variable typing (simple type or relationship).

Object Behavior Framework User’s Guide
3. Tools
3.3. Object Net Browser (NetBrowser)122

Figure 3.3.5. ONB pop-up dialog: Removing variable type

2.37. Select Remove Typing. Note in the variables window that there is now no type.

3.3.5.4. Set Relationships Alt+R
2.38. Select class1var1.
2.39. Right click in the variables window.
2.40. Select SetRelationship.
2.41. The Relationship Editor on variable <class1var1> appears. The Relationship Editor will be des-
cribed later in this part.
2.42. In the Target class drop-list box: Select AaaClass2.
2.43. Check the checkbox Primitive.
2.44. Click OK.
Note in the variables window that the type is now "Relationship ->1" and the target is AaaClass2.

3.3.5.5. Browse Related Class Alt+B
When a variable is typed as a relationship, the class referenced by that variable is referred to as the
"related class".
2.45. Select class1var1.
2.46. Right click in the variables window. Note the enabled options in the menu:

Figure 3.3.6. ONB pop-up dialog: Browse related class

2.47. Select Browse Related Class.
AaaClass2 is now selected in the classes window. Note that AaaClass2 is the target of a primitive relation-
ship. Therefore, you cannot browse to AaaClass1 from AaaClass2.

3.3.5.6. Remove Description Alt+D
If an inherited variable is redefined in a subclass, a MicFwVariableDescription object is added to the
ExtendedDescription for the subclass. This variable description can be removed and the inherited defini-
tion of the variable restored by selecting Remove Description.
2.48. Select AaaClass1.
2.49. Select id.
2.50. Uncheck checkbox Key.
2.51. In response to "Do you want to redefine the description of...": Click Yes.
2.52. Right click in the variables window. Note the enabled options in the menu:

Figure 3.3.7. ONB pop-up dialog: Remove description

2.53. Select Remove Description.
2.54. In response to "Remove the redefinition of id and inherit the definition of the superclass?": Click
Yes.
Note that the inherited definition has been restored.

Remove specification of relationship.

Select in the classes window the class referenced by variable.

Remove description of inherited variable and reinherit.

Disabled because variable is inherited, even if description changed.

Object Behavior Framework User’s Guide
3. Tools

3.3. Object Net Browser (NetBrowser) 123

3.3.5.7. Remove Instance Variable Alt+V
Only non-inherited instance variables can be deleted.
2.55. Select AaaClass1.
2.56. Select class1var1.
2.57. Right click.
2.58. Select Remove Instance Variable.
2.59. In response to "Do you really want to remove (class1var1) from AaaClass1?": Click Yes.
Note that the variable has been deleted from the variables window.

3.3.6. Variable parameters
3.3.6.1. Key

If the Key checkbox is checked, the variable is a key for the class. All key variables for an instance of the
class must uniquely identify the instance (ie, no 2 instances can have the same values for all key values).
During runtime
The key parameter has no effect during runtime. It is used only by the Persistence Framework (e.g., by the
POM-Generator).

3.3.6.2. Validate Type
If checked, Validate Type will cause automatic validation of the type of an object assigned to the variable.
If the object is not of the required type and cannot be converted to the required type, an exception is gen-
erated.
For relationships
The type of assigned target object and the cardinality will be checked immediately.

3.3.6.3. Transact
If checked, Transact allows the variable to be transacted.
Important: Changes to a variable will not be transacted if the varialble is not marked as transacted.

3.3.6.4. Persistent
If checked, Persistent provides the variable with capability for persistence.
Note: If Persistent is checked, Transact is also checked automatically.

Object Behavior Framework User’s Guide
3. Tools
3.4. Type Editor124

3.4. Type Editor

3.4.1. Primary functions
The primary functions of the Type Editor are to select:
• A simple type for the variable from a list of available simple types.
• The type converter for the variable.
• If applicable to the selected variable type:

• Size (for String, etc.)
• Scale (precision for Float, etc.)

3.4.2. Opening the Type Editor
There are 2 ways to open the Type Editor from the Net Browser:
• Double-clicking on a variable with a simple type.
• Selecting Set Type Alt+T from the variable window pop-up menu.
The Type Editor window is opened:

Figure 3.4.1. Type Editor

3.4.3. Fields / checkboxes in the type editor
3.4.3.1. show all classes

Check this checkbox to list all classes as available types.
Uncheck this checkbox to list only those classes that are normally selected as simple types.

3.4.3.2. Available types
The Select a class drop-list box displays the list of classes from which a variable type can be selected.
There are 2 types of lists:
• With show all classes NOT checked: The classes compose a set of classes that are considered as

normal types (Integer, Date, etc.).
• With show all classes checked: All subclasses of MicFwApplicationObject are displayed. This check-

box is not normally checked in order to shorten the list of types.

3.4.3.3. Type converter
The type converter for this variable. The type converter converts any object assigned to the variable that is
not of the type specified required by the variable. If the type converter cannot convert an assigned object,
an exception is generated.

3.4.3.4. Type parameters
The type parameters are required for certain types. For example:
• Size could be specified for a String object as 20 (characters).
• Scale could be specified for a Float object as 5 (5 decimal points accuracy).

Available types

Size / scale spec for selected type

Object Behavior Framework User’s Guide
3. Tools

3.5. Relationship Editor 125

3.5. Relationship Editor

3.5.1. Primary functions
The primary functions of the Relationship Editor are:
• Select the type of relationship (primitive or bidirectional).
• Select the target class.
• If bidirectional relationship: Select target class variable that will reference source class.
• Specify cardinality of target class.
• If bidirectional relationship: Specify cardinality of source class.
• Specify type converter.
• Specify if target should be monitored.

3.5.2. Opening the Relationship Editor
The Relationship Editor can be opened from the NetBrowser in 1 of 2 ways:
• Select a variable. Right click. Select Set Relationship from the pop-up window.
• Double-click on a variable that already has a relationship as its type.
The class of the variable that the Relationship Editor was opened on is always the source class.

3.5.2.1. Open the relationship editor:
3.1. Open the Net Browser.
3.2. Create variables AaaClass1>>class1var1 and AaaClass2>>class2var1.
3.3. Select AaaClass1>>class1var1.
3.4. Right-click.
3.5. Select Set Relationship. The Relationship Editor is opened with AaaClass1 as the Source class
and class1var1 as the source relationship variable.

Figure 3.5.1. Relationship editor

3.5.3. Fields in the Relationship Editor
3.5.3.1. Source class>>variable

The source class and instance variable is always the class>>variable that the Relationship Editor was
opened on. If you open a second Relationship Editor window on the class>>variable that is displayed in
one Relationship Editor window as the target, then the source and target class>>variables will be
reversed.

Source class>>variable

Primitive checkbox

Monitor target

Cardinality LEFT (target cardinality; displayed on source side)

Type converter
Cardinality RIGHT (source cardinality; displayed on target side)

Target class (primitive); Target class + variables (non-primitive)

Object Behavior Framework User’s Guide
3. Tools
3.5. Relationship Editor126

3.5.3.2. Target class + variables window
The target class and all target class variables are displayed in this window. If a target class>>variable is
selected, then it has been already defined as the target variable in the relationship with the source
class>>variable.

3.5.3.2.1. Select target and target>>variable
3.6. From the "Target class" drop-list box: Select AaaClass2. Note that in the "Target Instance Variable"
list that variables id and class2var1 as displayed.

3.5.3.3. Primitive checkbox
This checkbox will determine if the relationship is primitive or non-primitive (bi-directional).

3.5.3.3.1. Select primitive
3.7. Check the Primitive checkbox. Note that the target variables are no longer displayed and that
source cardinality (cardinality RIGHT) selectors are disabled.

3.5.3.3.2. Deselect primitive
3.8. Uncheck the Primitive checkbox. Note that the target variables are redisplayed and that source
cardinality (cardinality RIGHT) selectors are enabled.

3.5.3.4. Monitor Target
Monitor target is only supported for to-1 relationships.
This flag is necessary for the aggregated 1-to-1 rela-tionship, where it will be set automatically when map-
ping an aggregated relationship. For the other to-1-relationships it is optional.
The target object creates a change-event connection to the relationship, so that the other side of the rela-
tionship knows, when the target object changed its value. Normally, if a (unidirectional) primitive relation-
ship is mapped, no event connection is created between the relationship proxy and the target object so
that changes to the target object can not be detected and propagated to the source object if necessary.
The use of the #monitor target flag creates the event connection. For a aggregated 1-to-1 relationship,
you must set the #monitor target flag, so that changes to the source object can be detected by the FW.

3.5.3.5. Target cardinality (cardinality LEFT)
The target cardinality determines the min and max number of target objects the source>>variable should
reference. If N is checked, then the max number of target objects is unlimited.

3.5.3.6. Source cardinality (cardinality RIGHT)
The source cardinality determines the min and max number of source objects the target>>variable should
reference. If N is checked, then the max number of source objects is unlimited.
This option is only available if checkbox Primitive is not checked.

3.5.3.7. Typeconverter
The type converter for the object referenced by the source>>variable and (non-primitive only) the tar-
get>>varibable.

Object Behavior Framework User’s Guide
3. Tools

3.6. Transaction Browser 127

3.6. Transaction Browser

3.6.1. Primary functions
The primary functions of the Transaction Browser are:
• Display:

• All contexts
• Transaction levels (within the selected context)
• Versioned objects (within the selected transaction level)
• Transacted variables (within the selected versioned object)
• Actual or transacted (actual + transacted changes) object (referenced by the selected transacted

variable)
• Commit or abort entire contexts or certain transaction levels within a context.

3.6.2. Opening the Transaction Browser
The Transaction Browser can be opened 2 ways:
• In the System Transcript: Select micFrameworks / Browse Transactions from the pop-up window.
• With the following message statement:

MicFwTransactionsBrowser openBrowser.

3.6.2.1. Open the Transaction Browser:
4.1. Execute the following code segment to generate example contexts and transaction levels and open

the transaction browser:
OBF CH Create transactions, open browser."
[

MicFwTransactionManager abortAll.
Smalltalk removeKey: #CONTEXT1 ifAbsent: [].
Smalltalk removeKey: #CONTEXT2 ifAbsent: [].
Smalltalk removeKey: #Context1Instance ifAbsent: [].
Smalltalk removeKey: #Context2Instance ifAbsent: [].

Smalltalk at: #CONTEXT1 put: MicFwTransactionManager newTransactionContext.
Smalltalk at: #CONTEXT2 put: MicFwTransactionManager newTransactionContext.
Smalltalk at: #Context1Instance put: SimpleClass new.
Smalltalk at: #Context2Instance put: SimpleClass new.

]
[

Context1Instance simpleString: 'Context1Level0'.
Context2Instance simpleString: 'Context2Level0'.
CONTEXT1 beginTransaction.
Context1Instance simpleString: 'Context1Level1'.
CONTEXT2 beginTransaction.
Context2Instance simpleString: 'Context2Level1'.
CONTEXT2 beginTransaction.
Context2Instance simpleString: 'Context2Level2'.
MicFwTransactionsBrowser openBrowser.

]

Object Behavior Framework User’s Guide
3. Tools
3.6. Transaction Browser128

The transaction browser is opened. The following diagram explains the fields in the browser:

Figure 3.6.1. Transaction Browser

3.6.3. Submenu Transactions
4.2. Display the submenu Transactions by clicking in the menu OR by right-clicking the mouse in the
List of contexts.

Figure 3.6.2. Transaction Browser: Submenu Transactions

3.6.3.1. Update
The Transaction Browser display is not automatically updated. You can select this menu item to update
the display.
Note: The display can also be updated by selecting a different window and reselecting the transaction
browser window.

3.6.3.2. Activate/Deactivate
Select this menu item to toggle the active status of the selected context. Remember these points when
using this menu selection:
• Selecting when the active context is selected will deactivate the context and not activate any other con-

text (ie, no context is active).
• Selecting when an inactive context is selected will cause the active context to be deactivated and the

selected context to be activated.

3.6.3.3. Begin Transaction
Select this menu item to create a new transaction level in the selected (not active) context. Not only will a
new transaction level be created, but the selected context will become the active context.

3.6.3.4. Inspect
Select this menu item to open an inspector on the selected context (a MicFwTransactionContext object).

List of contexts ("*" denotes active)

Cleanup, commit, abort

List of transacted variables within selected versioned object

Transaction mode (umcommitted / isolated)

Committed or uncommitted object referenced by variable

Object display mode

List of transaction levels within selected context
List of versioned objects within selected transaction level

(committed/uncommitted)

Object Behavior Framework User’s Guide
3. Tools

3.6. Transaction Browser 129

3.6.3.5. Exit
Select to exit the transaction browser. This has no effect on the contexts.

3.6.4. Submenu Objects
4.3. To display the submenu Objects:

4.3.1 Select a context.
4.3.2 Select a transaction level.
4.3.3 Select a versioned object.
4.3.4 Select Objects OR right-click the mouse in list of versioned objects.

3.6.4.1. Inspect
Select to open an inspector on the selected object.

3.6.5. Submenu ObjectInstanceVariables
4.4. To display the submenu ObjectInstanceVariables:

4.4.1 Select a context.
4.4.2 Select a transaction level.
4.4.3 Select a versioned object.
4.4.4 Select a transacted instance variable.
4.4.5 Select ObjectInstanceVariables OR right-click the mouse in list of instance variables.

3.6.5.1. Inspect
Select to open an inspector on the selected instance variable.

3.6.6. Context / TransactionLevel fields / buttons

Figure 3.6.3. Transaction Browser: Context / TransactionLevel fields / buttons

3.6.6.1. List of contexts
Displays a list of all running contexts (the single active context is marked with "*" (asterisk)).

3.6.6.2. List of transaction levels
Displays a list of transaction levels in the selected context.

3.6.6.3. Clean Up Contexts
Click this button to abort all displayed contexts.

3.6.6.4. Commit
Click this button to commit the highest transaction level in the selected context (the level itself does not
have to be selected). If the selected context has only transaction level 1, then the context will be commit-
ted.

3.6.6.5. Abort
Click this button to abort the highest transaction level in the selected context (the level itself does not have

List of contexts ("*" denotes active) List of transaction levels within selected context

Object Behavior Framework User’s Guide
3. Tools
3.6. Transaction Browser130

to be selected). If the selected context has only transaction level 1, then the context will be aborted.

3.6.6.6. Transaction mode
This field displays the transaction mode of the selected context (uncommitted or isolate).

3.6.7. Versioned objects fields / buttons

Figure 3.6.4. Transaction Browser: Versioned objects fields / buttons

3.6.7.1. List of versioned objects within level
Displays a list of all objects that have been modified within the selected context and transaction level.

3.6.7.2. Variable for selected versioned object
Displays the (transacted) variable that references the the versioned object.

3.6.7.3. Committed / uncommitted object in context
Displays the actual object (if committed selected) or the transacted version of the object (if uncommitted
selected).

3.6.7.4. Display committed / uncommitted object
Toggle this button to display the actual object (committed) or the transacted version of the object (uncom-
mitted). For example, clicking on the committed button in the above diagram would display the transacted
object:

Figure 3.6.5. Transaction Browser: Displaye committed / uncommitted object button

Committed / uncommitted object in context
List of versioned objects within level

Variable for selected versioned object

Display committed / uncommitted object

Object Behavior Framework User’s Guide
Appendix A. API 131

Appendix A
API

Object Behavior Framework User’s Guide
Appendix A. API132

Object Behavior Framework User’s Guide
Appendix A. API 133

The following is a list of API methods for the Object Behavior Framework.

MicFwTransactionContext>>

abortToTop
Abort all child contexts of receiver and then abort all transaction levels in receiver.

MicFwTransactionContext>>
abortTransaction

Abort highest transaction level in receiver. If TrLevel1 aborted, then abort all child contexts and receiver.

MicFwTransactionContext>>
activate

Receiver becomes the single active context.

MicFwTransactionContext>>
allCurrentChanges

Answer a Dictionary with all changes on the current level in the receiver. The changed objects appear as
keys, their version containers as values

MicFwApplicationObject>>
allRelationships

Answer a collection with the relationship objects for all relationships in the receiver.

MicOvmObjectVersion>>
allVersionedAspects

Answer a collection with all aspect identifiers in the receiver.

MicFwNRelationship>>
any

Answer a target object or <nil>. If there are more than one target objects in the collection, it is not ensured,
that multiple calls of this method would return the same target object.

MicFwApplicationObject>>
assertTypeValid

Check whether the receiver conforms to the type declarations that were made on the class level. If any
check fails, signal a MicFwTypingError.

MicFwApplicationObject>>
attributeNamed: instVarSymbol

Answer the value of attribute @instVarSymbol by performing the basic read accessor.

MicFwApplicationObject>>
attributeNamed: instVarSymbol put: newValue

Write access to instance variable @instVarSymbol with the new value @newValue.

MicFwTransactionContext>>
beginTransaction

Begin a new transaction level.

MicFwTransactionContext>>
committedRead

Set the mode of the receiver to #isolate. No uncommited changes from other transaction contexts will be
visible through this context.

MicFwTransactionContext>>
commitToTop

Commit all transaction levels of receiver and then commit all child contexts of receiver.

MicFwTransactionContext>>
commitTransaction

Attempt to commit the current transaction level. Let all interested parties prepare for the commit if neces-
sary (#aboutToCommit). If the method answers true, proceed. Go to the next lower transaction level.

MicFwTransactedObject>>
commitVersion: aMicFwObjectVersion inContext: aTransactionContext

Notify the receiver about a commit of @aMicFwObjectVersion in context @aTransactionContext. Trigger
the @commit event on a final commit. The commit has already been completed and @aTransactionCon-
text’s transactionLevel is already decremented.

MicFwTransactedObject>>

Object Behavior Framework User’s Guide
Appendix A. API134

commitVersion: aMicFwObjectVersion inContext: aTransactionContext inRelationship: aMicF-
wRelationship

Commit the receiver’s relationship @aMicFwRelationship to the version contained in aMicFwObjectVer-
sion.

MicFwApplicationObject>>

convertValues
Make the receiver conform to the type declarations that were made on the class level by sending
#as<type> to all declard instance variables. If any conversion fails (i.e. message not understood), the nor-
mal Error exception will result. If any conversion results in a value of wrong size, signal a MicFwSizeError.

MicFwTransactionContext>>

couldLock: anAspect in: anObject
Answer true if a lock could be obtained for @anAspect in @anObject (i.e. no other context holds a ver-
sion), false otherwise.

MicFwTransactionContext class>>

current
Answer the current transaction context or nil if none active. This is an alternative to MicFwTransactionMan-
ager global currentContext.

MicFwTransactionManager>>

currentContext
Return the active context.

MicFwProcessOrientedTransactionManager>>

currentContext
Answer the current context of the current smalltalk process.

MicFwTransactionManager>>

currentContext
Answer the current context.

MicFwTransactionManager class>>

currentContext
Answer the contexts that is currently active.

MicFwTransactionManager class>>

currentContext
Return active context (or nil).

MicFwTransactionContext>>

deactivate
If the receiver is the single active context: Deactivate the receiver (ie, no context is active).

MicFwApplicationObject class>>

defaultTypeConverter
Answer the default type converter for the receiver. Can be overriding by subclasses.

MicFw1Relationship>>

delete
Delete the relationship maintained by the receiver. Also delete the inverse references.

MicFwNRelationship>>

delete
Delete the relationship maintained by the receiver. Also delete the inverse references.

MicFwRelationship>>

delete
Delete the relationship maintained by the receiver, i.e. remove all references to objects. Also delete the
inverse references

MicFwTrNRelationship>>

delete
Delete the relationship maintained by the receiver. Also delete the inverse references

MicFw1Relationship>>

getTarget
Returns the target object of the ->1 relationship.

Object Behavior Framework User’s Guide
Appendix A. API 135

MicFwNRelationship>>

getTarget
Returns a Collection of target objects referenced by the ->N relationship.

MicFwRelationship>>

getTarget
Returns the target object (the actual object or a collection, depending on the type of relationship) of the
relationship.

MicFwTr1Relationship>>

getTarget
Returns the transacted target object of the ->1 relationship.

MicFw1Relationship>>

getTargetNoTr
For an non-transacted relationship: Returns the object referenced by the ->1 relationship. For a transacted
relationship: Returns the variable value (not the transacted object).

MicFwNRelationship>>

getTargetNoTr
For an non-transacted relationship: Returns the object version of the Collection of objects referenced by
the ->N relationship. For a transacted relationship: Returns the variable value of the Collection (not the
transacted object).

MicFwRelationship>>

getTargetNoTr
For an non-transacted relationship: Returns the object referenced by the relationship. For a transacted
relationship: Returns the variable value (not the transacted object).

MicFwTransactionManager class>>

global
Return single instance of receiver.

MicFwTransactionManager>>

hasCurrentContext
Return True if there is a active context.

MicFwQProjectionResult>>

hasOrder
Answer true if the receiver as an order definition.

MicFwApplicationObject class>>

hasRedefinitionFor: thisInstVar
Answer true if the receiver redefined the typing/description for instance variable @thisInstVar, else answer
false (= no description found/description is inherited/own variable).

MicFwTransactionManager>>

hasRunningTransaction
Return True if the active context has a TrLevel1.

MicOvmObjectVersion>>

hasVersionFor: anAspect
Answer true if the receiver contains a versioned value for <anAspect>, false otherwise.

MicFwDomainObject class>>

initializeValidation
Class method that sends all validateWrite:using: messages for all instance variables of the class that
should be validated.

MicFwRelationship>>

is1ToN
Answer whether the receiver describes a 1-to-N relationship.

MicFwTransactionContext>>

isActive
Answers True if receiver is the single active context.

MicFwApplicationObject>>

isAnyModified

Object Behavior Framework User’s Guide
Appendix A. API136

Check if the current transaction context (if any) holds a version for the receiver or for an relationship that
originates from the receiver.

MicFwTransactionContext>>
isIsolated

Answers True if receiver mode is isolated (not uncommitedRead).

MicFwRelationship>>
isMicFwRelationship

Answer whether the receiver is a relationship object.

MicFwTransactedObject>>
isModified

Check if the current transaction context (if any) holds a version for the receiver.

MicFwRelationship>>
isNToM

Answer whether the receiver describes a N-to-M relationship.

MicFwTransactionContext>>
isolate

Set the mode of the receiver to #isolate. No uncommited changes from other transaction contexts will be
visible through this context.

MicFwTransactionContext>>
isolateFor: aBlock

temporarily isolate the receiver context while executing <aBlock>. Reset to the previously isolation after-
wards. Answer the result of <aBlock>.

MicFwRelationship>>
isPrimitive

Answer whether the receiver is a primitive (one-sided) relationship object.

MicFwApplicationObject>>
isRelValid

Check whether the receiver conforms to the relationship cardinality declarations that were made on the
class level. If any check fails, answer false. Otherwise, answer true.

MicFwTransactionContext>>
isRunning

Answer whether the receiver is in an uncommited state.

MicFw1Relationship>>
isTo1

Answer whether the receiver describes a to-1 relationship.

MicFwRelationship>>
isTo1

Answer whether the receiver describes a to-1 relationship.

MicFwNRelationship>>
isToN

Answer whether the receiver describes a to-N relationship.

MicFwRelationship>>
isToN

Answer whether the receiver describes a to-N relationship.

MicFwApplicationObject class>>
isTypable

Answer whether the receiver contain type declaration.

MicFwApplicationObject>>
isTypeValid

Check whether the receiver conforms to the type declarations that were made on the class level. If any
check fails, answer false. Otherwise, answer true.

MicFw1Relationship>>
isValid

Answer true if the receiver conforms to the declared cardinality constraints, false otherwise.

Object Behavior Framework User’s Guide
Appendix A. API 137

MicFwNRelationship>>

isValid
Answer true if the receiver conforms to the declared cardinality constraints, false otherwise.

MicFwRelationship>>

isValid
Answer true if the receiver conforms to the declared cardinality constraints, false otherwise.

MicFwApplicationObject class>>

newNoTransact
Create an instance of the receiver that is not sensitive to transaction handling.

MicFwDomainObject>>

newPersistent
Creates a persistent instance of the DO.

MicFwTransactionContext>>

newTransactionContext
Create new context as child of receiver.

MicFwTransactionManager>>

newTransactionContext
Create a new <code>TransactionContext</code> with this manager as its owner and manager. This con-
text isn't activated automatically but can be activated by sending #beginTransaction to the context.

MicFwTransactionManager>>

newTransactionContext
Create a new <code>TransactionContext</code> with this manager as its owner and manager. This con-
text isn’t activated automatically but can be activated by sending #beginTransaction to the context.

MicOvmObjectVersion>>

newValueFor: anAspect
Answer the new value stored for <anAspect>.

MicFwQArrayParser>>

nextPutMessage: aSymbol

MicFwNRelationship>>

orderAscending
Define the receiver to be sorted on the attributes named in @arrayOfSelectors in ascending order. The
attributes are assumed to be base attributes (not relationships).

MicFwNRelationship>>

orderBy: selectorsOrClause
Define the sort order for the receiver. @selectorsOrClause can be either an array of selectors, optionally
postfixed with #asc or #desc designators, or a previously created MicFwOrderClause. Answer the order-
Clause.

MicFwNRelationship>>

orderDescending: arrayOfSelectors
Define the receiver to be sorted on the attributes named in @arrayOfSelectors in descending order. The
attributes are assumed to be base attributes (not relationships).

MicOvmObjectVersion>>

recordNewVersion: aValue for: anAspect
Set @aValue as the new value for attribute @anAspect.

MicFwApplicationObject class>>

relationshipFor: aSymbol
Answer a relationship for attribute <aSymbol>, or <nil> if none.

MicFw1Relationship>>

releaseTarget
Remove the committed target from the receiver without any transacted changes.

MicFwNRelationship>>

releaseTarget
Remove the committed target from the receiver without any transacted changes.

Object Behavior Framework User’s Guide
Appendix A. API138

MicFwRelationship>>

releaseTarget
Remove the committed target from the receiver without any transacted changes.

MicFwNRelationship>>

removeAll
Obsolete. Remove all objects from the relationship maintained by the receiver. Also delete the inverse ref-
erences.

MicFwNRelationship>>

removeOrder
The order clause for the handled object was removed. Remove the sorted order from the target collection.

MicFwTransactionContext>>

removeVersionsFor: anAspect in: anObject
Remove all version information for <code>anAspect</code> in <code>anObject</code> in all transaction
levels. Information will also be removed in child contexts. @param anObject the object containing the
desired aspect @param anAspect the aspect for which to remove version information.

MicFwTransactionContext>>

removeVersionsFor: anObject
Remove all version information accumulated for <code>anObject</code>. Information will als be removed
in child contexts. @param anObject the object for which to remove version information @return true when
a version has been removed in one of the contexts.

MicFwTransactionContext class>>

running
Answer the currently running transaction context or nil if none. This is an alternative to MicFwTransaction-
Manager global runningContext.

MicFwTransactionManager>>

runningContext
Answer the current context if it has has a transaction running, or nil otherwise.

MicFwTransactionManager class>>

runningContexts
Return the running contex (or nil).

MicFw1Relationship>>

setTo: anObject
Create the relationship connection between @anObject and #thisObject. Validate the type of @anObject
and the connection, if the receiver's #validateType is <true>. Delegate to connection handler.

MicFwApplicationObject class>>

setTypeConverter: aTypeConverterClass for: aSelector
Set the converter class for the instance variable named @aSelector.

MicFwTransactionManager class>>

terminate
Abort and destroy the default instance of the receiver.

MicFwNRelationship>>

transact
Answer true if the relationship access handler handles transacted accesses, false otherwise.

MicFwTr1Relationship>>

transact
Answer true if the relationship access handler handles transacted accesses, false otherwise.

MicFwNRelationship>>

transact: aBoolean
Set the transaction property for the receiver. If @aBoolean = true -> handle accesses transacted.

MicFwTr1Relationship>>

transact: aBoolean
Set the transaction property for the receiver. If @aBoolean = true -> handle accesses transacted.

MicFwTransactedObject>>

transactionContext

Object Behavior Framework User’s Guide
Appendix A. API 139

Answer the current TransactionContext for the receiver. This is the default implementation, that answers
the currentContext from the receiver’s transactionManager You may overwrite this method to return a spe-
cific one.

MicFwTransactionContext>>
transactionLevel

Return the active (highest) transaction level of receiver (as Integer).

MicFwTransactedObject>>
transactionManager

Answer the TransactioManager for the receiver. This is the default implementation, that answers the global
TransactionManager. You may overwrite this method to return a specific one.

MicFwTransactedObject>>
triggerUncommitedChange: instVar value: aValue

trigger the uncommited change event for an instance variable.

MicFwApplicationObject class>>
typeDescriptionClass

Answer the class used to hold the type information of an instance variable of the receiver.

MicFwApplicationObject class>>
typingDeclarationFor: variableSelector

Answer any kind of type declaration (i.e. relationship or base type) for <variableSelector>, or <nil> if none.

MicFwTransactionContext>>
uncommittedRead

Set the mode of the receiver to #uncommitedRead. Uncommited changes from other transaction contexts
will be visible.

MicFwApplicationObject>>
unTransact

Delete all transact flags in the receiver.

MicFwDomainObject>>
validateWrite: #var using: aBlock

Causes any attempted assignment of an object to the variable var to be allowed only if the object to be
assigned meets the criteria specified in the block aBlock.

MicFwTransactedObject>>
writeVersion: aMicFwObjectVersion

Commit the receiver to the version contained in aMicFwObjectVersion. Write the changes to the attributes.
The context calls this method on a level-1-commit (final commit).

Object Behavior Framework User’s Guide
Appendix A. API140

Object Behavior Framework User’s Guide
Appendix B. Glossary 141

Appendix B
Glossary

Object Behavior Framework User’s Guide
Appendix B. Glossary142

Object Behavior Framework User’s Guide
Appendix B. Glossary 143

This glossary defines terms that are presented throughout this manual.

->1 relationship: In ->1 relationships, a source instance variable references 0..1 target objects (nil or 1 object).
No target instance variable refers to the source object.

An example of a ->1 relationship is the relationship between Person (source) and PersonName (target). Per-
son instance variable name references 1 PersonName object (a person has only 1 name). No PersonName
instance variable references the Person object (a PersonName object never needs to know which Person
object is referencing it).

->N relationship: In ->N relationships, a source instance variable references min...max target objects (where
min...max is specified by the cardinality).

An example of a ->N relationship would be the relationship between Person (source) and PersonName (tar-
get), with the assumption that a person can have more than 1 name. Person instance variable name refer-
ences min...max PersonName objects, where min = 1 and max is unspecified. No PersonName instance
variable references the Person object.

1<->1 relationship: In 1<->1 relationships, a source instance variable references 0..1 (signified by the "1" on the
RIGHT of "1<->1") target object. The target instance variable references the same 1 (signified by the "1" on
the LEFT of "1<->1") source object or nil. The relationship is not primitive, because the target object should
have a reference to the source object.

An example of a 1<->1 relationship would be the relationship between Customer (source) and Portfolio (tar-
get). Customer instance variable portfolio references 1 Portfolio object. Portfolio instance variable customer
references the 1 Customer object. The relationship is not primitive, because a Portfolio object should know
which object is its Customer.

1<->N relationship: In 1<->N relationships, a source instance variable references N (where N is any number
with the range max...min specified by the cardinality of the relationship) target objects. There is an instance
variable in all of the referenced target objects that reference the 1 source object.

An example of a 1<->N relationship would be the relationship between Employee (source) and Customer (tar-
get). Employee instance variable ownedCustomers would reference N (cardinality min <= N <= cardinality
max) Customer objects. The instance variable ownerEmployee in each referenced Customer object would ref-
erence the 1 Employee object.

Abort a context: A context is aborted when all version objects within the context are dereferenced (ie, none of
the changes that were transacted while the context was active will actually be implemented) and the context
ceases to exist. See: abortcontext.

Abstract Control:: An Abstract Control simplifies external access to the Framework, as such access can only
take place via real Control. There are only a small number of genuinely different Abstract Controls (see com-
mand example in the MVC chapter). The actual access attempts are handled with real Control via an appro-
priate Adapter.

Focus change, issuing commands and transfer of data - including a range of state information like validation
or authorization - will be done in this abstract layer. The real Controls are completely decoupled from all
Domain Process actions and Domain Model data; all technical details of external interfaces (GUI, DDE, ...) are
completely hidden in the Abstract Control implementation.

Abstract Event: Abstract Window Events are the objects that really perform the communication between the
view system and the model world, whereas Abstract Windows are merely containers for Abstract Events
which additionally may provide some services for them. Abstract events can be divided into two functional
types: Abstract events which propagate changes in the model world to the view and Abstract Events which
propagate changes or requests from the user interface to the model world.

Abstract Value: An Abstract Value is a container object that is used by Viewports to keep and propagate infor-
mation about a Viewport Aspect to and from the view. It does not only contain a value for the content of a con-
trol, but also different kinds of state information like whether or not the control should be enabled, what the
(background) color is, which context help text is displayed, and so on.

Abstract View: When a real View is created, an Abstract View begins to exist in its shadow. The lifetime of the
Abstract View is exactly determined by the lifetime of the real View. The Abstract View's purpose is to manage
the Abstract Controls corresponding one-to-one to the real Controls on the view. Moreover, the Abstract View
performs coordination between abstract and platform layer when opening, activating and closing the view. It
communicates with the real Platform View using a Platform Adapter.

Accessor Generator: The accessor generator is the object that creates the OBF accessors for a variable.

Active Context: Only 1 context can be active at anytime. While a context is active, any changes to any trans-

Object Behavior Framework User’s Guide
Appendix B. Glossary144

acted variables will be recorded in object versions. This variable will be locked by the context, which means
that no changes may be made to the variable while a sibling context or parent context is active as long as this
context exists.

Adapter: A Platform Adapter system is introduced which does the translation of protocols and overcomes the
architectural differences between the host Smalltalk system architecture and the Application Framework
architecture. This makes the core part of the framework itself portable.

Archiver: See: Code Archiver.

Authorization: The access to individual objects controlled on the model level. Authorization works both for
accessing attributes of Domain Objects and for executing Aspects of business processes.

Broker: To allow subsystems or specific requests to them to be exchanged with an own implementation, Applica-
tion Framework uses Broker classes that offer a thin public interface with the internal knowledge how to dele-
gate the call to the subsystem. A common Broker concept enables the developers to modify request
algorithms or subsystem behavior quite easy.

Cardinality: The cardinality of a relationship determines the required min and max number of target objects ref-
erenced by the source variable. In 2-way relationships, there are 2 cardinalities. The second cardinality deter-
mines the requried min and max number of source objects referenced by the target variable.

CB: Connections Browser.

Child context: A child context can change any variable locked by its parent. A variable, having been changed by
the child context, is now locked by the child context. The parent context cannot change a variable locked by
the child. See: parent Context.

Code Generator: See Accessor Generator.

Commit a context: Committing a context has the same effect as committing all transaction levels (TrLevels) in
the context.

Committed target: In a VersionObject: A getter message to a source object will return the committed target
object referenced by the variable if no context is active OR if [the active context read mode is isolate AND the
source object’s variable is not locked by the active context AND the active context is not a child context of the
context with the variable lock]. See: transacted Target.

Concurrent contexts: 2 contexts are concurrent if there is no parent-child relationship between them. Such con-
texts can also be referred to as "sibling" contexts. A sibling context may not change a variable locked by
another sibling context.

Concurrent transactions: See Concurrent Contexts.

Connector: A Connector is used to connect objects (Domain Objects and Domain Processes) to an external
view. The Connector decouples view and model objects and provides access to connected Domain Objects
and Domain Processes on a low level. In this respect, it forms a bridge between the objects, decoupling also
Domain Objects from Domain Processes and thus making them more combinable and exchangeable.

Context: See Transaction Context.

DDL: A language enabling the structure and instances of a database to be defined in a human- and machine-
readable form.

Default Base Connection: The Default Base Connection will be used to hold the Domain Object if no explicit
Base Connection is defined for this process.

Delegation Model: An concept used to decouple subsystems from each other. Application programmers imple-
ment subclasses of Viewport to isolate the model from the interaction subsystem.

Domain Model: A Domain Model is a design phrase for real world concepts like Customer, Policy or Address. Its
instances are called Domain Objects.

Domain Object: Domain objects describe that part of the MVC architecture which corresponds to business
terms. The behavior and structure are primarily defined in this respect. The appropriate tool (object net
browser) from the Object Behavior Framework is used for this purpose, and mapping to the database is
described with STOPF from Persistence Framework . The Domain Object also has open interfaces for con-
necting authorization and validation.

Domain Process: A Domain Process is a design phrase for processing and workflow-oriented tasks and control
flow. Its instances are also called Domain Processes. Due to their controlling-oriented nature, they take also
responsibility for managing a Transaction Context if appropriate.

Object Behavior Framework User’s Guide
Appendix B. Glossary 145

Domain Processes Browser: A tool, supplied with the Application Framework to browse the exiting Domain
Processes

DPB: Domain Processes Browser.

Extended Description (MicFwExtendedDescription): The object that completely describes the typing of all
variables in a class. The class method createExtendedDescription creates the MicFwExtendedDescription
object.

Framework Logger: The tracing facility of the Framework’s. Events and messages will be routed through this
logger.

Framework: A Framework is a software architecture for certain tasks, which components can be easily reused
by application developers. It provides the system with a basic structure in being a collection of cooperating
and conceptual concise classes and methods, which are designed to support a task-oriented work progress in
application development.

Inactive Context: A non-active context. See: Active Context.

InstanceVariableDescription (MicFwInstanceVariableDescription): The object that completely describes the
typing of a single instance variable in a class. The class method createExtendedDescription creates the MicF-
wInstanceVariableDescription object (which is referenced within the MicFwExtendedDescription object).

Isolated Context: A variable getter sent to a source object that is locked by another context while an isolated
context is active will return not the committed target of the transaction object in the other context, but rather
the uncommitted target. See: uncommitedread context.

M<->N relationship: In M<->N relationships, a source instance variable references M (where M is any number
with the range max...min specified by the cardinality LEFT of the relationship) target objects. There is an
instance variable in all of the referenced target objects that reference the N (where N is any number with the
range max...min specified by the cardinality RIGHT of the relationship) objects of the source object class,
including the current source object.

An example of an M<->N relationship would be the relationship between Person (source) and Address (tar-
get). Person instance variable addresses would reference M (cardinality min <= M <= cardinality max)
Address objects. Address instance variable persons would reference N (cardinality min <= N <= cardinality
max) Person objects, including the current Person object.

Mapper: To maintain registration of loosely coupled elements within the Framework, Mappers are used to set,
get and remove associations between unique, constant names and their corresponding classes, which them-
selves may change or may be reimplemented in your project. Mappers are implemented as singletons and
can be reached through an easy to use interface as they extend Object with one method per Mapper.

MicFwTransactionContext:

Model View Connector: Is the object that holds the child-process- and Base-Connections for one process.

Model View Controller: The MVC (concept of a Model View Controller) defines an architecture intended to yield
a strict decoupling of Domain Model Aspects, flow control and external views - mostly displayed graphically
for user interaction.

Nested transaction levels: The transaction levels in a context are nested if more than 1 level exists.

OBF (Object Behavior Framework): OBF is a library of classes that when added to your Smalltalk development
environment provides a Framework for defining the requirements and restrictions for the behavior of objects.

Object Model: A model of object that can be created in the OMB and then saved to VA.

Object Model Browser: A tool for creating and managing object models.

Object Net Browser: A visual OBF tool that dispayes both the object net of a class and information about the
instance variables of the class (key, validated, transacted, persistent, type, relationship). The visual OBF tools
Type Editor and Relationship Editor are opened from the Object Net Browser.

Object Net: An Object Net consists of objects and its relationships between them.

ObjectVersion (version object): An ObjectVersion is created if a transaction context is active and a target
object is assigned to a transacted variable of a source object. The ObjectVersion is assigned to the highest
TrLevel in the active context. If an ObjectVersion already exists in this TrLevel, it is replaced. The ObjectVer-
sion references the committed target object (committed) and the uncommitted target object (uncommitted) ref-
erenced by the variable.

OMB: Object Model Browser.

Object Behavior Framework User’s Guide
Appendix B. Glossary146

ONB: Object Net Browser.

Packaging: The process of creating a runtime executable.

Parent context: A parent context is a context object that created its child context when it responded to the
newTransactionContext message. The parent context can have any number of child contexts. A parent con-
text can also be a child context. If parent context B has a parent context A and B also has a child context C,
then A and C also have a parent child relationship. See: Child Context.

POM: Persistent Object Manager.

Primitive relationship: A 1-way relationship. See: 1-way relationship.

Relationship Editor: A visual OBF tool for establishing relationships between 2 classes. See: object Net
Browser.

Relationship: In Smalltalk, relationships between objects are simply represented as object pointers. No distinc-
tion is made between complex and simple (scalar) data types since all are full-scale objects and there is con-
ceptually no difference between a relationship and an "embedded" value.

Beyond this, the PMS MICADO Object Behavior Framework provides an elaborated relationship concept
maintaining referential integrity between objects. Those relationships may even be mapped to (relational)
databases with the help of the PMS MICADO Persistence Framework

RelationshipDescription (MicFw~): Object which contains complete information about a relationship.

Running context: A context that has a TrLevel1 (it may have higher levels also).

Save to VA: Implementing the contents of an object model in VA code.

Sibling contexts: See Concurrent Contexts.

STOPF / ODBC: Smalltalk Object Persistence Framework

Transacted variable: A variable that has been marked as transacted in the Object Net Browser. NOTE:Changes
to a variable will not be transacted even if a transaction context is active if the variable is not marked as trans-
acted.

Transaction Browser: A Visual OBF tool for displaying and manipulating (aborting / committing) transactions.

Transaction Context: A logical unit that can contain transaction levels and that can be related to other contexts
as a parent, sibling, or child.

Transaction Level: A subunit of a transaction context. A transaction level has a single object version for each
variable of each object that was assigned a new target object while the the transaction level was the highest
level in its context and its context was active.

Transaction Manager: The transaction manager is a single instance (singleton) of MicFwTransactionManager
and manages all running contexts.

Transaction: A defined state of an object that runs under transactional control will be stored. If the interaction on
this object fails by some reason, this object can be restored to this state, if the interaction succeeds, the per-
sistent state of this object will be modified to this new state and the old state will be dropped.

TrLevel1, 2, ...: Transaction level 1, 2, ...

Type Converter: A type converter is assigned to a typed variable (including variables in a relationship). When an
object is assigned to the variable that is not of the type specified for the variable, the type converter will be
used to attempt to create the correct type of object containing the information in the original object and assign
this correct type of object to the variable.

Type Editor: A visual tool for setting a variable type as a simple type (Integer, Date, etc.). The type converter and
size / scale for the variable type can also be selected. The Type Editor is opened from the Object Net Browser.

TypeDescription (MicFw~): Object which contains complete information about the typing of an instance vari-
able.

Typing: The term typing defines the assignment of types (normally basic classes like Integer or String) to
instance variables. Since Smalltalk is an untyped language, the PMS MICADO Object Behavior and Persis-
tence Frameworks introduce typing in order to support storing of objects into (typed) relational databases.

UML (Unified Markup Language): Graphical notation for OO analysis and design.

uncommitedRead context: If an ObjectVersion exists for aSourceObject>>aSOVariable (ie, aSOVariable is
transacted and anUncommittedTargetObject was assigned to aSOVariable while aContext1 was active): If

Object Behavior Framework User’s Guide
Appendix B. Glossary 147

aContext2 is an active uncommitedRead context and getter message sOVariable is sent to aSourceObject,
the object returned will be anUncommittedTargetObject. See: Isolated context.

Note: The message is spelled "uncommitedRead".

Uncommitted target: In a VersionObject: A getter message to a source object will return the uncommitted target
object referenced by the variable if [the active context read mode is uncommitedReadisolate AND the active
context does not have a lock on the source object variable AND the active context is not a child context of the
context that has the lock] OR if the source object’s variable is locked by the active context. See: Committed
Target.

Validation of ExtendedDescription: Validation of an ExtendedDescription involves checking the Object Net for
errors.

Validation: Like the authorization service, validation ties in at the model layer and is used for checking value-
based access to and from attributes based on certain rules.

VariableDescription (MicFw~): Object which contains complete information about an instance variable.

Viewport: In order to separate view-related state handling from Domain Objects and Domain Processes, Appli-
cation Framework implements a Viewport as a Delegation Model concept. Functionality for transportation and
the filtering of data and states concerning an object net from a certain object's or view's direction is delegated
from the Domain Models to them, leading to a more lightweight and view independent kind of Domain Object.

Viewports "learn" the dependencies between their Aspects and the corresponding Model Aspects while run-
ning the application. This read trace frees the programmer from dealing with changed-events and allows
Application Framework to update both sides automatically and in a generic way.

A Dispatcher is called Viewport if Domain Objects are concerned.

Object Behavior Framework User’s Guide
Appendix B. Glossary148

Object Behavior Framework User’s Guide
List Of Tables 149

List Of Tables

Table 1: DemoStartView part type labels and part names ...74
Table 2: DemoView part type labels and part names ..74
Table 3: Example table for API information ...90
Table 4: Domain Object Base API instance methods ..91
Table 5: Domain Process Base API class methods ...92
Table 6: Domain Process Base API instance methods ...92
Table 7: ViewPort Base API methods ..95
Table 8: Example table of API information ...142
Table 9: Domain Object Advanced API class methods ...143
Table 10: Domain Process Advanced API class methods ...145
Table 11: Domain Process Advanced API instance methods ..151
Table 12: Viewport Advanced API class methods ...165
Table 13: Viewport Advanced API instance methods ..169
Table 14: Authorization methods ...177
Table 15: Group controls Advanced API (instance) methods ..182
Table 16: MicFwBrokerMapper mappings ...225
Table 17: MicFwBrowserMapper mappings ...225
Table 18: MicFwGenusMapper mappings ...226
Table 19: MicFwInterfaceMapper mappings ..226
Table 20: Table of Locale Categories ..231
Table 21: Configuration Maps ..256
Table 22: Prerequiste applications ...256

Object Behavior Framework User’s Guide
List Of Tables150

Object Behavior Framework User’s Guide
List Of Figures 151

List Of Figures

Figure 1: Initialize relationships lazy checkbox ..13
Figure 1.2.1. Standard type ...23
Figure 1.2.2. Standard type example ...23
Figure 1.2.3. ->1 (primitive) relationship ..24
Figure 1.2.4. ->1 (primitive) relationship example ..24
Figure 1.2.5. ->N (primitive) relationship ..24
Figure 1.2.6. ->N (primitive) relationship example ...24
Figure 1.2.7. 1<->1 relationship ...25
Figure 1.2.8. 1<->1 relationship example ..25
Figure 1.2.9. 1<->N relationship ..25
Figure 1.2.10. 1<->N relationship example ..25
Figure 1.2.11. M<->N relationship ...26
Figure 1.2.12. M<->N relationship example ...26
Figure 1.3.1. Debitting account A and creditting account B ...27
Figure 1.3.2. Newly created object version ..28
Figure 1.3.3. Object version with new uncommitted target ..29
Figure 1.3.4. Object version in a dialog ...29
Figure 1.3.5. TrLevel1 with multiple object versions ..29
Figure 1.3.6. Object versions in TrLevel1 for balances of accounts A and B ..29
Figure 1.3.7. Transaction level with multiple object versions: Example dialog ..30
Figure 1.3.8. Aborting TrLevel1 ...30
Figure 1.3.9. Bank account example: Aborting changes in TrLevel1 before T3 ..30
Figure 1.3.10. Aborting a TrLevel: Example dialog ..30
Figure 1.3.11. Committing TrLevel1 ...31
Figure 1.3.12. Bank account example: Committing changes in TrLevel1 at T3 ...31
Figure 1.3.13. Committing a TrLevel: Example dialog ...31
Figure 1.3.14. Nested TrLevels ..31
Figure 1.3.15. Object version in TrLevel2 ..32
Figure 1.3.16. Nested TrLevels: Example dialogs ...32
Figure 1.3.17. Object versions in TrLevel1 and TrLevel2 ..32
Figure 1.3.18. Aborting TrLevel2 ...33
Figure 1.3.19. Aborting highest TrLevel by clicking the Cancel button in the lowest subdialog33
Figure 1.3.20. Committing the highest TrLevel (not TrLevel1) ...33
Figure 1.3.21. Committing highest TrLevel by clicking the OK button in the lowest subdialog34
Figure 1.3.22. Object versions in TrLevel1 and TrLevel2 ..34
Figure 1.3.23. Aborting all TrLevels (1 and 2) ..34
Figure 1.3.24. Committing all TrLevels (1 and 2) ...35
Figure 1.3.25. Context with TrLevels ...35
Figure 1.3.26. Running context ..35
Figure 1.3.27. Non-running context ...35
Figure 1.3.28. Multiple contexts ...36
Figure 1.3.29. Single active context in multiple-context environment ..36
Figure 1.3.30. Running / non-running contexts in multiple-context environment ...36
Figure 1.3.31. Hierarchical contexts ..36
Figure 1.3.32. Hierarchical contexts’ dialogs ...36
Figure 1.3.33. Non-hierarchical contexts ...37
Figure 1.3.34. Parent-child relationships between hierarchical contexts ...37
Figure 1.3.35. Concurrent relationships between hierarchical contexts ..37
Figure 1.3.36. Variable lock: Variable can be changed when context with lock active38
Figure 1.3.37. Variable lock: Variable can be changed when non-active parent has lock38
Figure 1.3.38. Lock of a variable transferred from parent to child context ...38
Figure 1.3.39. Transfer of variable lock from child context to parent context when child committed/aborted38
Figure1.3.40.UncommittedtargetreturnedwhenactiveuncommitedReadandvariablelockedbynon-activeconcurrent
39
Figure 1.3.41. Uncommitted target returned when variable locked by non-active parent40
Figure 1.3.42. Uncommitted target returned when active uncommitedRead and variable locked by non-active child
40

Object Behavior Framework User’s Guide
List Of Figures152

Figure 1.3.43. Committed target returned when active isolated and variable locked by non-active concurrent 40
Figure 1.3.44. Uncommitted target returned when variable locked by non-active parent 41
Figure 1.3.45. Committed target returned when active isolated and variable locked by non-active child 41
Figure 1.3.46. Aborting context with parent and child relationships to other contexts 42
Figure 1.3.47. Committing a context with parent and child relationships to other contexts 42
Figure 1.3.48. Example dialogs for uncommitedRead and isolated contexts .. 42
Figure 1.3.49. Example dialogs: Change in isolated context .. 43
Figure 1.3.50. Example dialogs: Dialog for uncommitedRead context obtains focus 43
Figure 1.3.51. Example dialogs: Attempted change of a variable locked by other context 43
Figure 1.3.52. Example dialogs: Uncommitted change in other dialog is not reflected in the isolated dialog ... 44
Figure 1.3.53. Committed change is shown in isolated dialog .. 44
Figure 1.3.54. isolated and commitedRead contexts: Example dialogs. ... 44
Figure 1.3.55. Change in the parent context dialog is displayed in the child context dialogs. 45
Figure 1.3.56. How changes in an uncommitedRead child dialog are displayed in sibling and parent dialogs 45
Figure 1.3.57. How changes in an isolated child dialog are displayed in sibling and parent dialogs 45
Figure 1.3.58. Variables locked by child contexts cannot be changed in parent context 46
Figure 1.3.59. Transaction manager ... 46
Figure 2.3.1. ZyxTutorial in the application list .. 51
Figure 2.3.2. Prerequisites for ZyxTutorial .. 51
Figure 2.3.3. Prerequisites for ZyxTutorial .. 51
Figure 2.4.1. OMB main dialog (with class net for MicFwConnectorEditProcess) .. 52
Figure 2.4.2. OMB main dialog (with new model) ... 52
Figure 2.4.3. Dialog "Class specification" tab "Definition" ... 53
Figure 2.4.4. Class name and parent class specification in dialog "Class specification" 53
Figure 2.4.5. ZyxTutorial specified as the application for ZyxClass1 in dialog "Class specification" tab "Specification"
53
Figure 2.4.6. ZyxClass1 in the OMB class net list ... 53
Figure 2.7.1. Contents of ZyxClass1.st in Workspace dialog .. 56
Figure 2.8.1. Specifying default application for new classes ... 57
Figure 2.8.2. ZyxClass11 as a subclass of ZyxClass1 in the OMB (not in VA) ... 57
Figure 2.8.3. ZyxClass2 as a subclass of MicFwDomainObject in the OMB (not in VA) 58
Figure 2.9.1. ZyxClass1>>var1, var2 in the OMB (not in VA) ... 59
Figure 2.9.2. ZyxClass11 inherited variables var1, var2 in the OMB (not in VA) ... 59
Figure 2.9.3. ZyxClass1 instance methods for var1, var2 ... 59
Figure 2.9.4. ZyxClass1>>var1 default accessor methods ... 60
Figure 2.9.5. ZyxClass1>>var1 instance method basicVar1X .. 60
Figure 2.9.6. Default accessor method prefixes for all classes ... 60
Figure 2.9.7. ZyxClass1>>var1, var2 accessor method names .. 60
Figure 2.9.8. "V" marking (for virtual) for var2 in ZyxClass1, ZyxClass11 in OMB .. 61
Figure 2.9.9. "R" marking (for redefine) for var2 in ZyxClass11 in OMB ... 61
Figure 2.10.1. ZyxPerson>>id typed as Integer .. 63
Figure 2.10.2. Default converter (MicFwTypeConverter) for ZyxPerson>>id .. 64
Figure 2.11.1. ZyxPerson>>dateOfBirth with type Date .. 67
Figure 2.12.1. Radio buttons for Key property for ZyxPerson>>id .. 69
Figure 2.12.2. Persistent variable ZyxPerson>>id and entry in database table PERSON 70
Figure2.12.3.PersistentvariableZyxPerson>>dateOfBirthandentryindatabasetablePERSONcolumnDATEBIRTH
70
Figure 2.13.1. ->1 relationship .. 71
Figure 2.13.2. Defining ZyxName variables in OMB ... 71
Figure 2.13.3. Checkbox "Relationship" in the OMB ... 72
Figure 2.13.4. Tab "Typing" for a relationship ... 72
Figure 2.13.5. Source class minimum/maximum (# of allowed target classes) ... 72
Figure 2.13.6. ->1 relationship source ZyxPerson>>name and target ZyxName in database table PERSON . 73
Figure 2.14.1. ZyxNameSubclass in OMB .. 75
Figure 2.14.2. Object net for ZyxNameSubclass ... 75
Figure 2.14.3. Object net for ZyxName ... 75
Figure 2.14.4. Object net for ZyxPerson ... 76
Figure 2.15.1. ->N relationship .. 77
Figure 2.15.2. Defining ZyxAddress variables in OMB .. 77
Figure 2.15.3. Source class minimum/maximum (# of allowed target classes) ... 78
Figure 2.15.4. The ->N relationship between ZyxPerson and ZyxAddress in table ADDRESS 80
Figure 2.16.1. 1<->1 relationship .. 81

Object Behavior Framework User’s Guide
List Of Figures 153

Figure 2.16.2. ZyxCustomer>>portfolio definition ..81
Figure 2.16.3. ZyxCustomer>>portfolio definition ..82
Figure 2.16.4. 1<->1 relationship between ZyxCustomer and ZyxPortfolio in tables CUSTOMER and PORTFOLIO
82
Figure 2.17.1. 1<->N relationship ..83
Figure 2.17.2. ZyxEmployee>>ownedCustomers definition ..83
Figure 2.17.3. ZyxCustomer>>ownderEmployee definition ...84
Figure 2.17.4. 1<->N relationship between ZyxCustomer ZyxEmployee in tables EMPLOYEE and CUSTOMER
84
Figure 2.18.1. M<->N relationship ...85
Figure 2.18.2. ZyxPerson>>addresses definition ..85
Figure 2.18.3. ZyxAddress>>persons definition ..86
Figure2.18.4.M<->NrelationshipbetweenZyxPersonandZyxAddressintablesPERSON,RESIDENCE,andADDRESS
86
Figure 2.19.1. Transactions Browser ...88
Figure 2.19.2. Specifying ZyxName>>firstName as transacted ...89
Figure 2.19.3. No running/active contexts in TB ..89
Figure 2.19.4. Running (TrLevel1) / active ("*") context in TB ...90
Figure 2.19.5. Typical dialog for data entry ..90
Figure 2.19.6. Uncommitted target (version value) for ZyxName in TB ...90
Figure 2.19.7. Committed target (variable value) for ZyxName in TB ..91
Figure 2.19.8. Object version ...91
Figure 2.19.9. Assigning object to transacted variable in active context with TrLevel1: Example dialog91
Figure 2.19.10. TrLevel1 committed: TB empty ...92
Figure 2.19.11. Committing TrLevel1: Example dialog ..92
Figure 2.19.12. Aborting TrLevel1: Example dialog ...93
Figure 2.20.1. 2 TrLevels in TB ..94
Figure 2.20.2. 2 TrLevels: Example dialogs. ..94
Figure 2.20.3. 1 TrLevel in TB ...95
Figure 2.20.4. Aborting highest TrLevel: Example dialogs. ...95
Figure 2.20.5. No TrLevels in TB ...96
Figure 2.20.6. Aborting all TrLevels: Example dialogs. ..96
Figure 2.20.7. 1 TrLevel in TB ...97
Figure 2.20.8. Committing highest TrLevel: Example dialogs. ...97
Figure 2.20.9. No transaction contexts in TB ...98
Figure 2.20.10. Committing all TrLevels: Example dialogs ..98
Figure 2.21.1. 2 contexts in TB ..99
Figure 2.21.2. 2 concurrent contexts in uncommitedRead mode: Example dialogs ..100
Figure 2.21.3. Designation of isolated mode in the TB status bar for a context ..100
Figure 2.21.4. 2 concurrent contexts in isolated mode: Example dialogs ..101
Figure 2.21.5. Unallowed changes to locked variables in concurrent contexts: Example dialogs101
Figure 2.22.1. Parent, child, grandchild contexts in TB ...103
Figure 2.22.2. Parent context with child, grandchild contexts: Example dialogs ...103
Figure 2.22.3. Parent context with child, grandchild contexts: uncommittedRead, isolated example dialogs .104
Figure 2.22.4. Transfer of variable locks between parent and child contexts ..105
Figure 3.2.1. OMB dialog (opened on class Model1Class1 from the Transcript menu)110
Figure 3.2.2. OMB dialog (opened with MicFwTemModelDescriptionProcess open)110
Figure 3.2.3. Major parts of the OMB dialog ..111
Figure 3.2.4. Submenu Model ..111
Figure 3.2.5. Submenu Class ..112
Figure 3.2.6. Class specification dialog ...113
Figure 3.2.7. Submenu Variable ..113
Figure 3.2.8. Submenu Options ...114
Figure 3.2.9. Submenu ? ...114
Figure 3.2.10. OMB Toolbar ..114
Figure 3.2.11. OMB classes tree ...115
Figure 3.2.12. OMB variable list ...115
Figure 3.2.13. OMB tab Variable ...116
Figure 3.2.14. OMB tab typing (not relationship) ...116
Figure 3.2.15. OMB tab typing (relationship) ...116
Figure 3.2.16. OMB tab Accessors ..117
Figure 3.2.17. OMB tab Properties ..117

Object Behavior Framework User’s Guide
List Of Figures154

Figure 3.2.18. OMB Status bar .. 117
Figure 3.2.19. OMB dialog Options tab Accessor prefixes .. 117
Figure 3.2.20. OMB dialog Options tab Language .. 118
Figure 3.2.21. OMB dialog Options tab Save .. 118
Figure 3.2.22. OMB dialog Options tab Defaults ... 118
Figure 3.3.1. Object Net Browser dialog ... 119
Figure 3.3.2. ONB: Submenu Class .. 120
Figure 3.3.3. ONB: Submenu Variable .. 121
Figure 3.3.4. ONB pop-up dialog: Setting variable type .. 121
Figure 3.3.5. ONB pop-up dialog: Removing variable type ... 122
Figure 3.3.6. ONB pop-up dialog: Browse related class ... 122
Figure 3.3.7. ONB pop-up dialog: Remove description ... 122
Figure 3.4.1. Type Editor ... 124
Figure 3.5.1. Relationship editor ... 125
Figure 3.6.1. Transaction Browser .. 128
Figure 3.6.2. Transaction Browser: Submenu Transactions ... 128
Figure 3.6.3. Transaction Browser: Context / TransactionLevel fields / buttons ... 129
Figure 3.6.4. Transaction Browser: Versioned objects fields / buttons ... 130
Figure 3.6.5. Transaction Browser: Displaye committed / uncommitted object button 130

Object Behavior Framework User’s Guide
Index 155

Index

Symbols
.st .. 55
.xml ... 55
->1 relationship... 71
->N relationship .. 77
? (menu) ... 114

Numerics
0..1.. 24
11 relationship .. 81
1N relationship ... 83
1-way relationships

Defined.. 21
2-way relationships

Defined.. 21

A
Abort (transacted changes).......................... 20
abortToTop ... 95
abortTransaction .. 92
About... (menu item)................................... 114
Abstract Control.. 143
Abstract Event .. 143
Abstract Value .. 143
Abstract View ... 143
Accessor prefix defaults 60
Accessor prefixes (tab) 60, 117
Accessors ... 23
Accessors (tab) 60, 116
active .. 90
Active context ... 27
active context ... 90
Adapter ... 143, 144
Add class net (toolbar icon) 114
Add class net... (menu item) 75, 112
Add class(es) (menu item) 112
Add class(es)... (menu item) 58
Add new variable (toolbar icon) 115
Add variable... (menu item) 59, 113
AFW.. 27
Alt+A ... 113
Alt+R ... 113
Application

(field) ... 53
Application Framework................................. 19
Applications / New.. 51
architecture... 145
authorization 144, 147
Automatic conversion 66

B
Base Connection.. 144
Basic read accessor (entry field) 60
beginTransaction ... 90
Broker... 144
Browse Transactions 89

C
Cardinality

Defined ... 24
cityName .. 77
Class (menu).. 112
Class name

(field) .. 53
class net ... 75
Class specification (dialog) 113
Class specification... (menu item) 54, 112
Class tree ... 115
Close (menu item) 54, 112
combinable... 144
Commit (transacted changes) 20
committed... 90
Committed target

Defined ... 19, 28
Committing transacted changes 30
commitToTop ... 97
commitTransaction 91
Concurrent ... 37
Concurrent access violation 22
Concurrent contexts..................................... 99
Configuration maps...................................... 15
Configuration Maps Browser 15
Connector... 144
Context

Active.. 19, 35, 36
Defined ... 35
Running .. 35, 36

control flow ... 144
Create class (in model) 53
Create model ... 52
createdExtendedDescription 23
Ctrl+A ... 112
Ctrl+D ... 111
Ctrl+F ... 113
Ctrl+N ... 112
Ctrl+O ... 111
Ctrl+P ... 112
Ctrl+R ... 112
Ctrl+S ... 111
Ctrl-Q.. 112
customer .. 81

Object Behavior Framework User’s Guide
Index156

D
Database interface 22
Date (variable type) 67
dateOfBirth.. 67
Default application 118
Default application for new classes.............. 57
Default Base Connection............................ 144
Defaults (tab) .. 118
Delegation Model.. 144
Description object

Structure .. 23
Design-time framework 22
Discard all changes (in model) 54
Discard all changes (menu item)................ 111
Discard all changes (toolbar icon).............. 114
Domain Model .. 144
Domain Object .. 144
Domain Process ... 144
Domain Processes Browser 145

E
Export to .st files ... 55
Export to an .xml file 55
External software component integration 22

F
File in .. 56
File in (menu item).. 56
Find class (toolbar icon) 114
Find class... (menu item) 113
firstName .. 71
Framework.. 145
Framework accessors 59
Framework Logger 145
Full menus .. 51

G
Generate XML (menu item)........................ 112
Go to target class (menu item) 113

H
Hierarchical context

Defined .. 36

I
Info (toolbar icon).. 115
Inherits from

(drop-down list) .. 53
Instance variable typing

Defined .. 19
Integer (variable type) 63
interaction ... 144
Invalid column types 22

isActive ... 90
isolate ... 100
Isolated (context) ... 39
isRunning ... 90

J
Java (menu item) 114

K
Key (variable) ... 69

L
Language (tab)... 117
lastName .. 71
Library .. 15
Linked tables .. 22
Lock (transacted variable) 27
Lock (variable).. 37
Logger .. 145

M
Make virtual variable (menu item) 61, 113
Manual conversion (convertValues) 64
Mapper ... 145
maximum.. 116
maximum (source class) 72
mgr45.dat ... 50
MicFwApplicationModelObjects................... 51
MicFwDomainObject.................................... 53
MicFwExtendedDescription 23
MicFwInstanceVariableDescription 23
MicFwRelationshipDescription..................... 23
MicFwTemModelDesriptionProcess 110
MicFwTypeConverter................................... 64
MicFwTypeDescription................................. 23
minimum... 116
minimum (source class) 72
MN relationship .. 85
model.. 144
Model (menu) ... 111
Model (object) .. 20
Model -> POM generator (menu item)....... 112
Model View Connector............................... 145
Monitor target (checkbox) 116
Multiple TrLevels .. 94
MVC ... 144, 145

N
Nested TrLevels ... 94
New Application dialog................................. 51
New class (toolbar icon)............................. 115
New class... (menu item) 53, 112
New model (menu item)............................... 52
New Model (toolbar icon) 114

Object Behavior Framework User’s Guide
Index 157

New model... (menu item) 54, 111
Non-hierarchical context

Defined.. 37
Non-virtual variable 61

O
OBF

Defined.. 19
OBF CH (#)... 50
obf_ex.txt .. 50
Object Behavior Framework 144, 146
Object model .. 20
Object Model Browser 20
Object net ... 19
object net .. 145
Object Net Browser 20, 144
Object relationships

Defined.. 19
Object version .. 90

Defined.. 28
ONB .. 28
Open class specification (toolbar icon) 115
Open Model (toolbar icon).......................... 114
Open model... (menu item) 54, 111
Open Object Model Browser........................ 52
Open Object Model Browser... (menu item) 110
openBrowser .. 88
Options (dialog) .. 117
Options (menu)... 114
Options (toolbar icon) 115
Overwrite model ... 54
ownedCustomers ... 83
ownerEmployee.. 83

P
packaging ... 146
Parent / Child contexts 102
Persistence

Defined.. 22
Persistence Framework 19, 144, 146
Persistent (checkbox)................................. 116
Persistent (variable) 69
Persistent object

Defined.. 19
persons ... 85
PFW.. 22, 27
Platform Adapter .. 143
Polymorphism... 21
portable... 144
portfolio ... 81
Preferences (menu item).............................. 60
Preferences... (menu item) 57, 114
Prerequisites (for application) 51
Primary Key .. 70
Primitive (checkbox) 116
primitive (relationship) 77

processing .. 144
Properties (tab) .. 117

R
read trace ... 147
readAccessTo

... 23, 59, 63, 66, 69
real Control .. 143
real View .. 143
real world concepts 144
Redefine Variable (menu item) 113
Redefine variable (menu item) 61
Redefine variable (toolbar icon)................. 115
referential integrity 146
relational databases................................... 146
relationship... 145, 146
Relationship (checkbox) 72
Relationship Editor................................. 20, 23
Relationships

->1 (primitive) .. 23
->N (primitive).. 24
1 to 1 .. 24
1 to N .. 25
Defined ... 19, 21
M to N ... 25

Remove class (menu item) 112
Remove class (toolbar icon) 115
Remove classes from model 58
Remove redefine.. 61
Remove redefine Variable (menu item) 113
Remove redefine variable (menu item) 61
Remove variable (menu item) 61, 113
Remove variable (toolbar icon).................. 115
Rename model... (menu item) 111
Reopen model.. 54
Run-time binding of messages 21
runtime executable 146
Run-time type verification 22

S
Save (tab)... 118
Save model (menu item)............................ 111
Save model... (menu item) 53
Save to file (toolbar icon) 114
Save to file... (menu item).......................... 112
Save to VA (menu item)............................. 111
Save to VA (toolbar icon)........................... 115
Saving (model) to VA 56
Scale (field) .. 63
Select root class..................................... 52, 75
Set all to default (checkbox) 57, 60
set to the default .. 118
Show inherited variable (menu item) 113
Size (field) .. 63
Smalltalk (menu item) 114
Source object

Defined ... 19

Object Behavior Framework User’s Guide
Index158

Specification (tab) ... 53
Static binding of messages 21
Status bar ... 117
Statusbar (menu item) 114
STOPF .. 144
Subapplication of (checkbox) 51

T
target class ... 72
Target class (drop-down list) 116
target class variable (drop-down list) 116
Target object

Defined .. 19
TB ... 28
Toolbar.. 114
Toolbar (menu item) 114
Tools (menu) .. 112
transactedReadAccessTo 28
transactedWriteAccessTo 28
Transaction

Defined .. 27
transaction .. 146
Transaction Browser 20, 88
Transaction Context 144

Defined .. 35
Transaction context 27
Transaction level

Defined .. 29
Transaction level nested

Defined .. 31
Transaction Manager

Defined .. 46
Transaction manager 27
Transaction write conflict.............................. 27
Transactions

Defined .. 19
TrLevel .. 88
TrLevel1 .. 29
Type

Standard .. 23
Type (instance variable)

Defined .. 19
Type class (menu item) 113
Type Editor ... 20
TypeConverter .. 115
Typing

Why OBF provides 22
typing .. 146
Typing (tab) .. 63, 116

U
uncommitedRead 39, 99
uncommitted ... 90
Uncommitted target 29

Defined .. 19, 28
Unrecognized message avoidance 22
update ... 147

Use default for new class (radio button) 57

V
Validate Model (toolbar icon) 114
Validate model... (menu item).................... 111
validatedWriteAccessTo

... 66, 69
validateType (checkbox) 66
validation .. 144, 147
Variable (menu).. 113
Variable (tab).. 115
Variable list... 115
variable lock transfer 105
Variable types

Defined ... 21
Variable typing ... 63
Variable value .. 91
version value .. 90
View (menu) ... 114
Viewport 143, 144, 147
Virtual variable ... 61

W
workflow ... 144
writeAccessTo

... 23, 59, 63

Z
ZyxAddress .. 77
ZyxClass1.st... 56
ZyxClass11 .. 57
ZyxClass2 .. 57
ZyxCustomer .. 81
ZyxEmployee ... 83
ZyxModel1.ome.. 53
ZyxName .. 71
ZyxNameSubclass 75
ZyxPortfolio .. 81
ZyxTutorial application 51

